You are using an unsupported browser. Please upgrade your browser to a newer version to get the best experience on Human Metabolome Database.
Record Information
Version3.6
Creation Date2012-09-06 15:16:51 UTC
Update Date2016-02-11 01:31:47 UTC
HMDB IDHMDB15179
Secondary Accession NumbersNone
Metabolite Identification
Common NameRifampin
DescriptionA semisynthetic antibiotic produced from Streptomyces mediterranei. It has a broad antibacterial spectrum, including activity against several forms of Mycobacterium. In susceptible organisms it inhibits DNA-dependent RNA polymerase activity by forming a stable complex with the enzyme. It thus suppresses the initiation of RNA synthesis. Rifampin is bactericidal, and acts on both intracellular and extracellular organisms. (From Gilman et al., Goodman and Gilman's The Pharmacological Basis of Therapeutics, 9th ed, p1160)
Structure
Thumb
Synonyms
ValueSource
3-(((4-Methyl-1-piperazinyl)imino)methyl)rifamycin SVChEBI
RFPChEBI
RifampicinaChEBI
RifampicinumChEBI
RifampinChEBI
Chemical FormulaC43H58N4O12
Average Molecular Weight822.9402
Monoisotopic Molecular Weight822.40512334
IUPAC Name(7S,9E,11S,12R,13S,14R,15R,16R,17S,18S,19E,21Z)-2,15,17,27,29-pentahydroxy-11-methoxy-3,7,12,14,16,18,22-heptamethyl-26-[(1E)-[(4-methylpiperazin-1-yl)imino]methyl]-6,23-dioxo-8,30-dioxa-24-azatetracyclo[23.3.1.1⁴,⁷.0⁵,²⁸]triaconta-1(29),2,4,9,19,21,25,27-octaen-13-yl acetate
Traditional Name(7S,9E,11S,12R,13S,14R,15R,16R,17S,18S,19E,21Z)-2,15,17,27,29-pentahydroxy-11-methoxy-3,7,12,14,16,18,22-heptamethyl-26-[(1E)-[(4-methylpiperazin-1-yl)imino]methyl]-6,23-dioxo-8,30-dioxa-24-azatetracyclo[23.3.1.1⁴,⁷.0⁵,²⁸]triaconta-1(29),2,4,9,19,21,25,27-octaen-13-yl acetate
CAS Registry Number13292-46-1
SMILES
CO[C@H]1\C=C\O[C@@]2(C)OC3=C(C2=O)C2=C(O)C(\C=N\N4CCN(C)CC4)=C(NC(=O)\C(C)=C/C=C/[C@H](C)[C@H](O)[C@@H](C)[C@@H](O)[C@@H](C)[C@H](OC(C)=O)[C@@H]1C)C(O)=C2C(O)=C3C
InChI Identifier
InChI=1S/C43H58N4O12/c1-21-12-11-13-22(2)42(55)45-33-28(20-44-47-17-15-46(9)16-18-47)37(52)30-31(38(33)53)36(51)26(6)40-32(30)41(54)43(8,59-40)57-19-14-29(56-10)23(3)39(58-27(7)48)25(5)35(50)24(4)34(21)49/h11-14,19-21,23-25,29,34-35,39,49-53H,15-18H2,1-10H3,(H,45,55)/b12-11+,19-14+,22-13-,44-20+/t21-,23+,24+,25+,29-,34-,35+,39+,43-/m0/s1
InChI KeyInChIKey=JQXXHWHPUNPDRT-WLSIYKJHSA-N
Chemical Taxonomy
ClassificationNot classified
Ontology
StatusExpected but not Quantified
Origin
  • Drug
Biofunction
  • Antibiotics
  • Antibiotics, Antitubercular
  • Antituberculosis Agents
  • Enzyme Inhibitors
  • Leprostatic Agents
  • Nucleic Acid Synthesis Inhibitors
Application
  • Pharmaceutical
Cellular locations
  • Cytoplasm
  • Membrane
Physical Properties
StateSolid
Experimental Properties
PropertyValueReference
Melting Point183 °CNot Available
Boiling PointNot AvailableNot Available
Water Solubility4.13e-02 g/LNot Available
LogP2.7Not Available
Predicted Properties
PropertyValueSource
Water Solubility0.041 mg/mLALOGPS
logP3.85ALOGPS
logP2.77ChemAxon
logS-4.3ALOGPS
pKa (Strongest Acidic)6.9ChemAxon
pKa (Strongest Basic)7.53ChemAxon
Physiological Charge1ChemAxon
Hydrogen Acceptor Count14ChemAxon
Hydrogen Donor Count6ChemAxon
Polar Surface Area220.15 Å2ChemAxon
Rotatable Bond Count5ChemAxon
Refractivity225.58 m3·mol-1ChemAxon
Polarizability86.46 Å3ChemAxon
Number of Rings5ChemAxon
Bioavailability0ChemAxon
Rule of FiveYesChemAxon
Ghose FilterYesChemAxon
Veber's RuleYesChemAxon
MDDR-like RuleYesChemAxon
Spectra
SpectraNot Available
Biological Properties
Cellular Locations
  • Cytoplasm
  • Membrane
Biofluid Locations
  • Blood
  • Urine
Tissue LocationNot Available
PathwaysNot Available
Normal Concentrations
BiofluidStatusValueAgeSexConditionReferenceDetails
BloodExpected but not QuantifiedNot ApplicableNot AvailableNot AvailableTaking drug identified by DrugBank entry DB01045
  • Not Applicable
details
UrineExpected but not QuantifiedNot ApplicableNot AvailableNot AvailableTaking drug identified by DrugBank entry DB01045
  • Not Applicable
details
Abnormal Concentrations
Not Available
Predicted Concentrations
BiofluidValueOriginal ageOriginal sexOriginal conditionComments
Blood0-1 uMAdult (>18 years old)BothNormalPredicted based on drug qualities
Blood0-1 umol/mmol creatinineAdult (>18 years old)BothNormalPredicted based on drug qualities
Associated Disorders and Diseases
Disease ReferencesNone
Associated OMIM IDsNone
DrugBank IDDB01045
DrugBank Metabolite IDNot Available
Phenol Explorer Compound IDNot Available
Phenol Explorer Metabolite IDNot Available
FoodDB IDNot Available
KNApSAcK IDNot Available
Chemspider ID10468813
KEGG Compound IDC06688
BioCyc IDNot Available
BiGG IDNot Available
Wikipedia LinkRifampin
NuGOwiki LinkHMDB15179
Metagene LinkHMDB15179
METLIN IDNot Available
PubChem CompoundNot Available
PDB IDRFP
ChEBI ID28077
References
Synthesis ReferenceNot Available
Material Safety Data Sheet (MSDS)Not Available
General References
  1. Baysarowich J, Koteva K, Hughes DW, Ejim L, Griffiths E, Zhang K, Junop M, Wright GD: Rifamycin antibiotic resistance by ADP-ribosylation: Structure and diversity of Arr. Proc Natl Acad Sci U S A. 2008 Mar 25;105(12):4886-91. doi: 10.1073/pnas.0711939105. Epub 2008 Mar 18. [18349144 ]

Enzymes

General function:
Involved in monooxygenase activity
Specific function:
Catalyzes the omega- and (omega-1)-hydroxylation of various fatty acids such as laurate, myristate and palmitate. Has little activity toward prostaglandins A1 and E1. Oxidizes arachidonic acid to 20-hydroxyeicosatetraenoic acid (20-HETE).
Gene Name:
CYP4A11
Uniprot ID:
Q02928
Molecular weight:
59347.31
References
  1. Preissner S, Kroll K, Dunkel M, Senger C, Goldsobel G, Kuzman D, Guenther S, Winnenburg R, Schroeder M, Preissner R: SuperCYP: a comprehensive database on Cytochrome P450 enzymes including a tool for analysis of CYP-drug interactions. Nucleic Acids Res. 2010 Jan;38(Database issue):D237-43. Epub 2009 Nov 24. [19934256 ]
General function:
Involved in transferase activity, transferring hexosyl groups
Specific function:
UDPGT is of major importance in the conjugation and subsequent elimination of potentially toxic xenobiotics and endogenous compounds. This isoform glucuronidates bilirubin IX-alpha to form both the IX-alpha-C8 and IX-alpha-C12 monoconjugates and diconjugate. Is also able to catalyze the glucuronidation of 17beta-estradiol, 17alpha-ethinylestradiol, 1-hydroxypyrene, 4-methylumbelliferone, 1-naphthol, paranitrophenol, scopoletin, and umbelliferone.
Gene Name:
UGT1A1
Uniprot ID:
P22309
Molecular weight:
59590.91
References
  1. Ellis E, Wagner M, Lammert F, Nemeth A, Gumhold J, Strassburg CP, Kylander C, Katsika D, Trauner M, Einarsson C, Marschall HU: Successful treatment of severe unconjugated hyperbilirubinemia via induction of UGT1A1 by rifampicin. J Hepatol. 2006 Jan;44(1):243-5. Epub 2005 Oct 27. [16288819 ]
  2. Jemnitz K, Lengyel G, Vereczkey L: In vitro induction of bilirubin conjugation in primary rat hepatocyte culture. Biochem Biophys Res Commun. 2002 Feb 15;291(1):29-33. [11829457 ]
General function:
Involved in monooxygenase activity
Specific function:
Cytochromes P450 are a group of heme-thiolate monooxygenases. In liver microsomes, this enzyme is involved in an NADPH-dependent electron transport pathway. It performs a variety of oxidation reactions (e.g. caffeine 8-oxidation, omeprazole sulphoxidation, midazolam 1'-hydroxylation and midazolam 4-hydroxylation) of structurally unrelated compounds, including steroids, fatty acids, and xenobiotics. Acts as a 1,8-cineole 2-exo-monooxygenase. The enzyme also hydroxylates etoposide.
Gene Name:
CYP3A4
Uniprot ID:
P08684
Molecular weight:
57255.585
References
  1. Dixit V, Hariparsad N, Li F, Desai P, Thummel KE, Unadkat JD: Cytochrome P450 enzymes and transporters induced by anti-human immunodeficiency virus protease inhibitors in human hepatocytes: implications for predicting clinical drug interactions. Drug Metab Dispos. 2007 Oct;35(10):1853-9. Epub 2007 Jul 16. [17639026 ]
  2. Preissner S, Kroll K, Dunkel M, Senger C, Goldsobel G, Kuzman D, Guenther S, Winnenburg R, Schroeder M, Preissner R: SuperCYP: a comprehensive database on Cytochrome P450 enzymes including a tool for analysis of CYP-drug interactions. Nucleic Acids Res. 2010 Jan;38(Database issue):D237-43. Epub 2009 Nov 24. [19934256 ]
General function:
Involved in monooxygenase activity
Specific function:
Cytochromes P450 are a group of heme-thiolate monooxygenases. In liver microsomes, this enzyme is involved in an NADPH-dependent electron transport pathway. It oxidizes a variety of structurally unrelated compounds, including steroids, fatty acids, and xenobiotics. This enzyme contributes to the wide pharmacokinetics variability of the metabolism of drugs such as S-warfarin, diclofenac, phenytoin, tolbutamide and losartan.
Gene Name:
CYP2C9
Uniprot ID:
P11712
Molecular weight:
55627.365
References
  1. Zhou SF, Zhou ZW, Yang LP, Cai JP: Substrates, inducers, inhibitors and structure-activity relationships of human Cytochrome P450 2C9 and implications in drug development. Curr Med Chem. 2009;16(27):3480-675. Epub 2009 Sep 1. [19515014 ]
  2. Dixit V, Hariparsad N, Li F, Desai P, Thummel KE, Unadkat JD: Cytochrome P450 enzymes and transporters induced by anti-human immunodeficiency virus protease inhibitors in human hepatocytes: implications for predicting clinical drug interactions. Drug Metab Dispos. 2007 Oct;35(10):1853-9. Epub 2007 Jul 16. [17639026 ]
  3. Preissner S, Kroll K, Dunkel M, Senger C, Goldsobel G, Kuzman D, Guenther S, Winnenburg R, Schroeder M, Preissner R: SuperCYP: a comprehensive database on Cytochrome P450 enzymes including a tool for analysis of CYP-drug interactions. Nucleic Acids Res. 2010 Jan;38(Database issue):D237-43. Epub 2009 Nov 24. [19934256 ]
General function:
Involved in monooxygenase activity
Specific function:
Responsible for the metabolism of a number of therapeutic agents such as the anticonvulsant drug S-mephenytoin, omeprazole, proguanil, certain barbiturates, diazepam, propranolol, citalopram and imipramine.
Gene Name:
CYP2C19
Uniprot ID:
P33261
Molecular weight:
55944.565
References
  1. Preissner S, Kroll K, Dunkel M, Senger C, Goldsobel G, Kuzman D, Guenther S, Winnenburg R, Schroeder M, Preissner R: SuperCYP: a comprehensive database on Cytochrome P450 enzymes including a tool for analysis of CYP-drug interactions. Nucleic Acids Res. 2010 Jan;38(Database issue):D237-43. Epub 2009 Nov 24. [19934256 ]
General function:
Involved in monooxygenase activity
Specific function:
Metabolizes several precarcinogens, drugs, and solvents to reactive metabolites. Inactivates a number of drugs and xenobiotics and also bioactivates many xenobiotic substrates to their hepatotoxic or carcinogenic forms.
Gene Name:
CYP2E1
Uniprot ID:
P05181
Molecular weight:
56848.42
References
  1. Preissner S, Kroll K, Dunkel M, Senger C, Goldsobel G, Kuzman D, Guenther S, Winnenburg R, Schroeder M, Preissner R: SuperCYP: a comprehensive database on Cytochrome P450 enzymes including a tool for analysis of CYP-drug interactions. Nucleic Acids Res. 2010 Jan;38(Database issue):D237-43. Epub 2009 Nov 24. [19934256 ]
General function:
Involved in monooxygenase activity
Specific function:
Exhibits low testosterone 6-beta-hydroxylase activity.
Gene Name:
CYP3A43
Uniprot ID:
Q9HB55
Molecular weight:
57756.285
References
  1. Preissner S, Kroll K, Dunkel M, Senger C, Goldsobel G, Kuzman D, Guenther S, Winnenburg R, Schroeder M, Preissner R: SuperCYP: a comprehensive database on Cytochrome P450 enzymes including a tool for analysis of CYP-drug interactions. Nucleic Acids Res. 2010 Jan;38(Database issue):D237-43. Epub 2009 Nov 24. [19934256 ]
General function:
Involved in monooxygenase activity
Specific function:
Cytochromes P450 are a group of heme-thiolate monooxygenases. In liver microsomes, this enzyme is involved in an NADPH-dependent electron transport pathway. It oxidizes a variety of structurally unrelated compounds, including steroids, fatty acids, and xenobiotics. Acts as a 1,4-cineole 2-exo-monooxygenase.
Gene Name:
CYP2B6
Uniprot ID:
P20813
Molecular weight:
56277.81
References
  1. Dixit V, Hariparsad N, Li F, Desai P, Thummel KE, Unadkat JD: Cytochrome P450 enzymes and transporters induced by anti-human immunodeficiency virus protease inhibitors in human hepatocytes: implications for predicting clinical drug interactions. Drug Metab Dispos. 2007 Oct;35(10):1853-9. Epub 2007 Jul 16. [17639026 ]
  2. Preissner S, Kroll K, Dunkel M, Senger C, Goldsobel G, Kuzman D, Guenther S, Winnenburg R, Schroeder M, Preissner R: SuperCYP: a comprehensive database on Cytochrome P450 enzymes including a tool for analysis of CYP-drug interactions. Nucleic Acids Res. 2010 Jan;38(Database issue):D237-43. Epub 2009 Nov 24. [19934256 ]
General function:
Involved in monooxygenase activity
Specific function:
Cytochromes P450 are a group of heme-thiolate monooxygenases. In liver microsomes, this enzyme is involved in an NADPH-dependent electron transport pathway. It oxidizes a variety of structurally unrelated compounds, including steroids, fatty acids, and xenobiotics.
Gene Name:
CYP3A5
Uniprot ID:
P20815
Molecular weight:
57108.065
References
  1. Preissner S, Kroll K, Dunkel M, Senger C, Goldsobel G, Kuzman D, Guenther S, Winnenburg R, Schroeder M, Preissner R: SuperCYP: a comprehensive database on Cytochrome P450 enzymes including a tool for analysis of CYP-drug interactions. Nucleic Acids Res. 2010 Jan;38(Database issue):D237-43. Epub 2009 Nov 24. [19934256 ]
General function:
Involved in monooxygenase activity
Specific function:
Cytochromes P450 are a group of heme-thiolate monooxygenases. In liver microsomes, this enzyme is involved in an NADPH-dependent electron transport pathway. It oxidizes a variety of structurally unrelated compounds, including steroids, fatty acids, and xenobiotics.
Gene Name:
CYP3A7
Uniprot ID:
P24462
Molecular weight:
57525.03
References
  1. Preissner S, Kroll K, Dunkel M, Senger C, Goldsobel G, Kuzman D, Guenther S, Winnenburg R, Schroeder M, Preissner R: SuperCYP: a comprehensive database on Cytochrome P450 enzymes including a tool for analysis of CYP-drug interactions. Nucleic Acids Res. 2010 Jan;38(Database issue):D237-43. Epub 2009 Nov 24. [19934256 ]
General function:
Involved in monooxygenase activity
Specific function:
Cytochromes P450 are a group of heme-thiolate monooxygenases. In liver microsomes, this enzyme is involved in an NADPH-dependent electron transport pathway. It oxidizes a variety of structurally unrelated compounds, including steroids, fatty acids, and xenobiotics. Most active in catalyzing 2-hydroxylation. Caffeine is metabolized primarily by cytochrome CYP1A2 in the liver through an initial N3-demethylation. Also acts in the metabolism of aflatoxin B1 and acetaminophen. Participates in the bioactivation of carcinogenic aromatic and heterocyclic amines. Catalizes the N-hydroxylation of heterocyclic amines and the O-deethylation of phenacetin.
Gene Name:
CYP1A2
Uniprot ID:
P05177
Molecular weight:
58406.915
References
  1. Preissner S, Kroll K, Dunkel M, Senger C, Goldsobel G, Kuzman D, Guenther S, Winnenburg R, Schroeder M, Preissner R: SuperCYP: a comprehensive database on Cytochrome P450 enzymes including a tool for analysis of CYP-drug interactions. Nucleic Acids Res. 2010 Jan;38(Database issue):D237-43. Epub 2009 Nov 24. [19934256 ]
General function:
Involved in monooxygenase activity
Specific function:
Cytochromes P450 are a group of heme-thiolate monooxygenases. In liver microsomes, this enzyme is involved in an NADPH-dependent electron transport pathway. It oxidizes a variety of structurally unrelated compounds, including steroids, fatty acids, and xenobiotics. In the epoxidation of arachidonic acid it generates only 14,15- and 11,12-cis-epoxyeicosatrienoic acids. It is the principal enzyme responsible for the metabolism the anti-cancer drug paclitaxel (taxol).
Gene Name:
CYP2C8
Uniprot ID:
P10632
Molecular weight:
55824.275
References
  1. Dixit V, Hariparsad N, Li F, Desai P, Thummel KE, Unadkat JD: Cytochrome P450 enzymes and transporters induced by anti-human immunodeficiency virus protease inhibitors in human hepatocytes: implications for predicting clinical drug interactions. Drug Metab Dispos. 2007 Oct;35(10):1853-9. Epub 2007 Jul 16. [17639026 ]
  2. Preissner S, Kroll K, Dunkel M, Senger C, Goldsobel G, Kuzman D, Guenther S, Winnenburg R, Schroeder M, Preissner R: SuperCYP: a comprehensive database on Cytochrome P450 enzymes including a tool for analysis of CYP-drug interactions. Nucleic Acids Res. 2010 Jan;38(Database issue):D237-43. Epub 2009 Nov 24. [19934256 ]
General function:
Involved in monooxygenase activity
Specific function:
Exhibits a high coumarin 7-hydroxylase activity. Can act in the hydroxylation of the anti-cancer drugs cyclophosphamide and ifosphamide. Competent in the metabolic activation of aflatoxin B1. Constitutes the major nicotine C-oxidase. Acts as a 1,4-cineole 2-exo-monooxygenase. Possesses low phenacetin O-deethylation activity.
Gene Name:
CYP2A6
Uniprot ID:
P11509
Molecular weight:
56517.005
References
  1. Preissner S, Kroll K, Dunkel M, Senger C, Goldsobel G, Kuzman D, Guenther S, Winnenburg R, Schroeder M, Preissner R: SuperCYP: a comprehensive database on Cytochrome P450 enzymes including a tool for analysis of CYP-drug interactions. Nucleic Acids Res. 2010 Jan;38(Database issue):D237-43. Epub 2009 Nov 24. [19934256 ]
General function:
Involved in sequence-specific DNA binding transcription factor activity
Specific function:
Nuclear receptor that binds and is activated by variety of endogenous and xenobiotic compounds. Transcription factor that activates the transcription of multiple genes involved in the metabolism and secretion of potentially harmful xenobiotics, drugs and endogenous compounds. Activated by the antibiotic rifampicin and various plant metabolites, such as hyperforin, guggulipid, colupulone, and isoflavones. Response to specific ligands is species-specific. Activated by naturally occurring steroids, such as pregnenolone and progesterone. Binds to a response element in the promoters of the CYP3A4 and ABCB1/MDR1 genes
Gene Name:
NR1I2
Uniprot ID:
O75469
Molecular weight:
49761.2
References
  1. Chen J, Raymond K: Roles of rifampicin in drug-drug interactions: underlying molecular mechanisms involving the nuclear pregnane X receptor. Ann Clin Microbiol Antimicrob. 2006 Feb 15;5:3. [16480505 ]
  2. Cheng J, Ma X, Krausz KW, Idle JR, Gonzalez FJ: Rifampicin-activated human pregnane X receptor and CYP3A4 induction enhance acetaminophen-induced toxicity. Drug Metab Dispos. 2009 Aug;37(8):1611-21. Epub 2009 May 21. [19460945 ]

Transporters

General function:
Involved in transporter activity
Specific function:
Mediates the Na(+)-independent transport of organic anions such as 17-beta-glucuronosyl estradiol, taurocholate, triiodothyronine (T3), leukotriene C4, dehydroepiandrosterone sulfate (DHEAS), methotrexate and sulfobromophthalein (BSP)
Gene Name:
SLCO1B3
Uniprot ID:
Q9NPD5
Molecular weight:
77402.2
References
  1. Cui Y, Konig J, Leier I, Buchholz U, Keppler D: Hepatic uptake of bilirubin and its conjugates by the human organic anion transporter SLC21A6. J Biol Chem. 2001 Mar 30;276(13):9626-30. Epub 2000 Dec 27. [11134001 ]
  2. Vavricka SR, Van Montfoort J, Ha HR, Meier PJ, Fattinger K: Interactions of rifamycin SV and rifampicin with organic anion uptake systems of human liver. Hepatology. 2002 Jul;36(1):164-72. [12085361 ]
  3. Cui Y, Konig J, Keppler D: Vectorial transport by double-transfected cells expressing the human uptake transporter SLC21A8 and the apical export pump ABCC2. Mol Pharmacol. 2001 Nov;60(5):934-43. [11641421 ]
General function:
Involved in transporter activity
Specific function:
Mediates the Na(+)-independent transport of organic anions such as pravastatin, taurocholate, methotrexate, dehydroepiandrosterone sulfate, 17-beta-glucuronosyl estradiol, estrone sulfate, prostaglandin E2, thromboxane B2, leukotriene C3, leukotriene E4, thyroxine and triiodothyronine. May play an important role in the clearance of bile acids and organic anions from the liver
Gene Name:
SLCO1B1
Uniprot ID:
Q9Y6L6
Molecular weight:
76448.0
References
  1. Cui Y, Konig J, Leier I, Buchholz U, Keppler D: Hepatic uptake of bilirubin and its conjugates by the human organic anion transporter SLC21A6. J Biol Chem. 2001 Mar 30;276(13):9626-30. Epub 2000 Dec 27. [11134001 ]
  2. Vavricka SR, Van Montfoort J, Ha HR, Meier PJ, Fattinger K: Interactions of rifamycin SV and rifampicin with organic anion uptake systems of human liver. Hepatology. 2002 Jul;36(1):164-72. [12085361 ]
  3. Tirona RG, Leake BF, Wolkoff AW, Kim RB: Human organic anion transporting polypeptide-C (SLC21A6) is a major determinant of rifampin-mediated pregnane X receptor activation. J Pharmacol Exp Ther. 2003 Jan;304(1):223-8. [12490595 ]
  4. Sharma P, Holmes VE, Elsby R, Lambert C, Surry D: Validation of cell-based OATP1B1 assays to assess drug transport and the potential for drug-drug interaction to support regulatory submissions. Xenobiotica. 2010 Jan;40(1):24-37. [19919292 ]
General function:
Involved in ATP binding
Specific function:
Mediates hepatobiliary excretion of numerous organic anions. May function as a cellular cisplatin transporter
Gene Name:
ABCC2
Uniprot ID:
Q92887
Molecular weight:
174205.6
References
  1. Kauffmann HM, Pfannschmidt S, Zoller H, Benz A, Vorderstemann B, Webster JI, Schrenk D: Influence of redox-active compounds and PXR-activators on human MRP1 and MRP2 gene expression. Toxicology. 2002 Feb 28;171(2-3):137-46. [11836020 ]
  2. Fromm MF, Kauffmann HM, Fritz P, Burk O, Kroemer HK, Warzok RW, Eichelbaum M, Siegmund W, Schrenk D: The effect of rifampin treatment on intestinal expression of human MRP transporters. Am J Pathol. 2000 Nov;157(5):1575-80. [11073816 ]
General function:
Involved in ATP binding
Specific function:
Mediates export of organic anions and drugs from the cytoplasm. Mediates ATP-dependent transport of glutathione and glutathione conjugates, leukotriene C4, estradiol-17-beta-o- glucuronide, methotrexate, antiviral drugs and other xenobiotics. Confers resistance to anticancer drugs. Hydrolyzes ATP with low efficiency
Gene Name:
ABCC1
Uniprot ID:
P33527
Molecular weight:
171589.5
References
  1. Courtois A, Payen L, Vernhet L, de Vries EG, Guillouzo A, Fardel O: Inhibition of multidrug resistance-associated protein (MRP) activity by rifampicin in human multidrug-resistant lung tumor cells. Cancer Lett. 1999 May 3;139(1):97-104. [10408915 ]
General function:
Involved in transporter activity
Specific function:
Mediates the Na(+)-independent transport of organic anions such as taurocholate, the prostaglandins PGD2, PGE1, PGE2, leukotriene C4, thromboxane B2 and iloprost
Gene Name:
SLCO2B1
Uniprot ID:
O94956
Molecular weight:
76697.9
References
  1. Vavricka SR, Van Montfoort J, Ha HR, Meier PJ, Fattinger K: Interactions of rifamycin SV and rifampicin with organic anion uptake systems of human liver. Hepatology. 2002 Jul;36(1):164-72. [12085361 ]
General function:
Involved in ATP binding
Specific function:
May act as an inducible transporter in the biliary and intestinal excretion of organic anions. Acts as an alternative route for the export of bile acids and glucuronides from cholestatic hepatocytes
Gene Name:
ABCC3
Uniprot ID:
O15438
Molecular weight:
169341.1
References
  1. Teng S, Jekerle V, Piquette-Miller M: Induction of ABCC3 (MRP3) by pregnane X receptor activators. Drug Metab Dispos. 2003 Nov;31(11):1296-9. [14570758 ]
General function:
Involved in ATP binding
Specific function:
Involved in the ATP-dependent secretion of bile salts into the canaliculus of hepatocytes
Gene Name:
ABCB11
Uniprot ID:
O95342
Molecular weight:
146405.8
References
  1. Byrne JA, Strautnieks SS, Mieli-Vergani G, Higgins CF, Linton KJ, Thompson RJ: The human bile salt export pump: characterization of substrate specificity and identification of inhibitors. Gastroenterology. 2002 Nov;123(5):1649-58. [12404239 ]
  2. Wang EJ, Casciano CN, Clement RP, Johnson WW: Fluorescent substrates of sister-P-glycoprotein (BSEP) evaluated as markers of active transport and inhibition: evidence for contingent unequal binding sites. Pharm Res. 2003 Apr;20(4):537-44. [12739759 ]
  3. Noe J, Hagenbuch B, Meier PJ, St-Pierre MV: Characterization of the mouse bile salt export pump overexpressed in the baculovirus system. Hepatology. 2001 May;33(5):1223-31. [11343252 ]
  4. Stieger B, Fattinger K, Madon J, Kullak-Ublick GA, Meier PJ: Drug- and estrogen-induced cholestasis through inhibition of the hepatocellular bile salt export pump (Bsep) of rat liver. Gastroenterology. 2000 Feb;118(2):422-30. [10648470 ]
General function:
Involved in ATP binding
Specific function:
Energy-dependent efflux pump responsible for decreased drug accumulation in multidrug-resistant cells
Gene Name:
ABCB1
Uniprot ID:
P08183
Molecular weight:
141477.3
References
  1. Geick A, Eichelbaum M, Burk O: Nuclear receptor response elements mediate induction of intestinal MDR1 by rifampin. J Biol Chem. 2001 May 4;276(18):14581-7. Epub 2001 Jan 31. [11297522 ]
  2. Schuetz EG, Beck WT, Schuetz JD: Modulators and substrates of P-glycoprotein and cytochrome P4503A coordinately up-regulate these proteins in human colon carcinoma cells. Mol Pharmacol. 1996 Feb;49(2):311-8. [8632764 ]
  3. Greiner B, Eichelbaum M, Fritz P, Kreichgauer HP, von Richter O, Zundler J, Kroemer HK: The role of intestinal P-glycoprotein in the interaction of digoxin and rifampin. J Clin Invest. 1999 Jul;104(2):147-53. [10411543 ]
  4. Fardel O, Lecureur V, Loyer P, Guillouzo A: Rifampicin enhances anti-cancer drug accumulation and activity in multidrug-resistant cells. Biochem Pharmacol. 1995 May 11;49(9):1255-60. [7763306 ]
  5. Collett A, Tanianis-Hughes J, Hallifax D, Warhurst G: Predicting P-glycoprotein effects on oral absorption: correlation of transport in Caco-2 with drug pharmacokinetics in wild-type and mdr1a(-/-) mice in vivo. Pharm Res. 2004 May;21(5):819-26. [15180340 ]
  6. Kuypers DR, Verleden G, Naesens M, Vanrenterghem Y: Drug interaction between mycophenolate mofetil and rifampin: possible induction of uridine diphosphate-glucuronosyltransferase. Clin Pharmacol Ther. 2005 Jul;78(1):81-8. [16003296 ]
  7. Gurley BJ, Barone GW, Williams DK, Carrier J, Breen P, Yates CR, Song PF, Hubbard MA, Tong Y, Cheboyina S: Effect of milk thistle (Silybum marianum) and black cohosh (Cimicifuga racemosa) supplementation on digoxin pharmacokinetics in humans. Drug Metab Dispos. 2006 Jan;34(1):69-74. Epub 2005 Oct 12. [16221754 ]
  8. Chen J, Raymond K: Roles of rifampicin in drug-drug interactions: underlying molecular mechanisms involving the nuclear pregnane X receptor. Ann Clin Microbiol Antimicrob. 2006 Feb 15;5:3. [16480505 ]
  9. Lamba J, Strom S, Venkataramanan R, Thummel KE, Lin YS, Liu W, Cheng C, Lamba V, Watkins PB, Schuetz E: MDR1 genotype is associated with hepatic cytochrome P450 3A4 basal and induction phenotype. Clin Pharmacol Ther. 2006 Apr;79(4):325-38. Epub 2006 Feb 20. [16580901 ]
  10. Huang R, Murry DJ, Kolwankar D, Hall SD, Foster DR: Vincristine transcriptional regulation of efflux drug transporters in carcinoma cell lines. Biochem Pharmacol. 2006 Jun 14;71(12):1695-704. Epub 2006 Apr 18. [16620787 ]
General function:
Involved in transporter activity
Specific function:
Mediates the Na(+)-independent transport of organic anions such as sulfobromophthalein (BSP) and conjugated (taurocholate) and unconjugated (cholate) bile acids
Gene Name:
SLCO1A2
Uniprot ID:
P46721
Molecular weight:
74144.1
References
  1. Vavricka SR, Van Montfoort J, Ha HR, Meier PJ, Fattinger K: Interactions of rifamycin SV and rifampicin with organic anion uptake systems of human liver. Hepatology. 2002 Jul;36(1):164-72. [12085361 ]
  2. Fattinger K, Cattori V, Hagenbuch B, Meier PJ, Stieger B: Rifamycin SV and rifampicin exhibit differential inhibition of the hepatic rat organic anion transporting polypeptides, Oatp1 and Oatp2. Hepatology. 2000 Jul;32(1):82-6. [10869292 ]
  3. Shitara Y, Sugiyama D, Kusuhara H, Kato Y, Abe T, Meier PJ, Itoh T, Sugiyama Y: Comparative inhibitory effects of different compounds on rat oatpl (slc21a1)- and Oatp2 (Slc21a5)-mediated transport. Pharm Res. 2002 Feb;19(2):147-53. [11883641 ]
  4. van Montfoort JE, Stieger B, Meijer DK, Weinmann HJ, Meier PJ, Fattinger KE: Hepatic uptake of the magnetic resonance imaging contrast agent gadoxetate by the organic anion transporting polypeptide Oatp1. J Pharmacol Exp Ther. 1999 Jul;290(1):153-7. [10381771 ]
General function:
Involved in ATP binding
Specific function:
Acts as a multispecific organic anion pump which can transport nucleotide analogs
Gene Name:
ABCC5
Uniprot ID:
O15440
Molecular weight:
160658.8
References
  1. Schrenk D, Baus PR, Ermel N, Klein C, Vorderstemann B, Kauffmann HM: Up-regulation of transporters of the MRP family by drugs and toxins. Toxicol Lett. 2001 Mar 31;120(1-3):51-7. [11323161 ]
General function:
Involved in transmembrane transport
Specific function:
Mediates sodium-independent multispecific organic anion transport. Transport of prostaglandin E2, prostaglandin F2, tetracycline, bumetanide, estrone sulfate, glutarate, dehydroepiandrosterone sulfate, allopurinol, 5-fluorouracil, paclitaxel, L-ascorbic acid, salicylate, ethotrexate, and alpha- ketoglutarate
Gene Name:
SLC22A7
Uniprot ID:
Q9Y694
Molecular weight:
60025.0
References
  1. Sekine T, Cha SH, Tsuda M, Apiwattanakul N, Nakajima N, Kanai Y, Endou H: Identification of multispecific organic anion transporter 2 expressed predominantly in the liver. FEBS Lett. 1998 Jun 12;429(2):179-82. [9650585 ]