You are using an unsupported browser. Please upgrade your browser to a newer version to get the best experience on Human Metabolome Database.
Record Information
Version3.6
Creation Date2012-09-06 15:16:51 UTC
Update Date2017-03-02 21:33:45 UTC
HMDB IDHMDB15195
Secondary Accession NumbersNone
Metabolite Identification
Common NameOxybutynin
DescriptionOxybutynin is an anticholinergic medication used to relieve urinary and bladder difficulties, including frequent urination and inability to control urination, by decreasing muscle spasms of the bladder. It competitively antagonizes the M1, M2, and M3 subtypes of the muscarinic acetylcholine receptor.
Structure
Thumb
Synonyms
ValueSource
4-(diethylamino)-2-Butynyl alpha-phenylcyclohexaneglycolic acid esterChEBI
4-diethylamino-2-Butinyl alpha-cyclohexylmandelatChEBI
4-diethylamino-2-Butynyl alpha-phenylcyclohexaneglycolateChEBI
Benzeneacetic acid, alpha-cyclohexyl-alpha-hydroxy-, 4-(diethylamino)-2-butynyl esterChEBI
Cyclohexaneglycolic acid, alpha-phenyl-, 4-(diethylamino)-2-butynyl esterChEBI
OxibutininaChEBI
OxybutynineChEBI
OxybutyninumChEBI
4-(diethylamino)-2-Butynyl a-phenylcyclohexaneglycolate esterGenerator
4-(diethylamino)-2-Butynyl a-phenylcyclohexaneglycolic acid esterGenerator
4-(diethylamino)-2-Butynyl alpha-phenylcyclohexaneglycolate esterGenerator
4-(diethylamino)-2-Butynyl α-phenylcyclohexaneglycolate esterGenerator
4-(diethylamino)-2-Butynyl α-phenylcyclohexaneglycolic acid esterGenerator
4-diethylamino-2-Butinyl a-cyclohexylmandelatGenerator
4-diethylamino-2-Butinyl α-cyclohexylmandelatGenerator
4-diethylamino-2-Butynyl a-phenylcyclohexaneglycolateGenerator
4-diethylamino-2-Butynyl a-phenylcyclohexaneglycolic acidGenerator
4-diethylamino-2-Butynyl alpha-phenylcyclohexaneglycolic acidGenerator
4-diethylamino-2-Butynyl α-phenylcyclohexaneglycolateGenerator
4-diethylamino-2-Butynyl α-phenylcyclohexaneglycolic acidGenerator
Benzeneacetate, a-cyclohexyl-a-hydroxy-, 4-(diethylamino)-2-butynyl esterGenerator
Benzeneacetate, alpha-cyclohexyl-alpha-hydroxy-, 4-(diethylamino)-2-butynyl esterGenerator
Benzeneacetate, α-cyclohexyl-α-hydroxy-, 4-(diethylamino)-2-butynyl esterGenerator
Benzeneacetic acid, a-cyclohexyl-a-hydroxy-, 4-(diethylamino)-2-butynyl esterGenerator
Benzeneacetic acid, α-cyclohexyl-α-hydroxy-, 4-(diethylamino)-2-butynyl esterGenerator
Cyclohexaneglycolate, a-phenyl-, 4-(diethylamino)-2-butynyl esterGenerator
Cyclohexaneglycolate, alpha-phenyl-, 4-(diethylamino)-2-butynyl esterGenerator
Cyclohexaneglycolate, α-phenyl-, 4-(diethylamino)-2-butynyl esterGenerator
Cyclohexaneglycolic acid, a-phenyl-, 4-(diethylamino)-2-butynyl esterGenerator
Cyclohexaneglycolic acid, α-phenyl-, 4-(diethylamino)-2-butynyl esterGenerator
OxibutyninumHMDB
OxybutininHMDB
Oxybutynin baseHMDB
Oxybutynin chlorideHMDB
Oxybutynin hydrochlorideHMDB
Oxybutynin topical gelHMDB
Transdermal patchHMDB
DitropanMeSH
Oxyb abzMeSH
OxybugammaMeSH
Oxybutin holstenMeSH
OxytrolMeSH
RenamelMeSH
RyolMeSH
TavorMeSH
GelniqueMeSH
4-(diethylamino)-2-Butynyl-alpha-cyclohexyl-alpha-hydroxybenzeneacetateMeSH
apo-OxybutyninMeSH
ContiminMeSH
DridaseMeSH
DriptaneMeSH
OxybutonMeSH
Oxybutynin alMeSH
Oxybutynin hexalMeSH
Oxybutynin-ratiopharmMeSH
OxymedinMeSH
SpasytMeSH
ZaturMeSH
CystonormMeSH
CystrinMeSH
DresplanMeSH
novo-OxybutyninMeSH
Nu-oxybutynMeSH
Oxybutynin azuMeSH
Oxybutynin heumannMeSH
PMS-OxybutyninMeSH
Spasmex oxybutyninMeSH
4-(diethylamino)-2-Butynyl-alpha-phenylcyclohexaneglycolateMeSH
Gen-oxybutyninMeSH
Oxybutynin stadaMeSH
Oxybutynin-purenMeSH
PollakisuMeSH
Oxybutynin von CTMeSH
Chemical FormulaC22H31NO3
Average Molecular Weight357.4864
Monoisotopic Molecular Weight357.230393863
IUPAC Name4-(diethylamino)but-2-yn-1-yl 2-cyclohexyl-2-hydroxy-2-phenylacetate
Traditional Nameoxybutynin
CAS Registry Number5633-20-5
SMILES
CCN(CC)CC#CCOC(=O)C(O)(C1CCCCC1)C1=CC=CC=C1
InChI Identifier
InChI=1S/C22H31NO3/c1-3-23(4-2)17-11-12-18-26-21(24)22(25,19-13-7-5-8-14-19)20-15-9-6-10-16-20/h5,7-8,13-14,20,25H,3-4,6,9-10,15-18H2,1-2H3
InChI KeyXIQVNETUBQGFHX-UHFFFAOYSA-N
Chemical Taxonomy
DescriptionThis compound belongs to the class of chemical entities known as benzene and substituted derivatives. These are aromatic compounds containing one monocyclic ring system consisting of benzene.
KingdomChemical entities
Super ClassOrganic compounds
ClassBenzenoids
Sub ClassBenzene and substituted derivatives
Direct ParentBenzene and substituted derivatives
Alternative Parents
Substituents
  • Monocyclic benzene moiety
  • Tertiary alcohol
  • Amino acid or derivatives
  • Carboxylic acid ester
  • Tertiary aliphatic amine
  • Tertiary amine
  • Carboxylic acid derivative
  • Monocarboxylic acid or derivatives
  • Alcohol
  • Aromatic alcohol
  • Organooxygen compound
  • Organonitrogen compound
  • Hydrocarbon derivative
  • Organic oxide
  • Organopnictogen compound
  • Carbonyl group
  • Organic oxygen compound
  • Organic nitrogen compound
  • Amine
  • Aromatic homomonocyclic compound
Molecular FrameworkAromatic homomonocyclic compounds
External Descriptors
Ontology
StatusExpected but not Quantified
Origin
  • Drug
Biofunction
  • Anticholinergic Agents
  • Antispasmodics
  • Genitourinary Smooth Muscle Relaxants
  • Muscarinic Antagonists
  • Parasympatholytics
Application
  • Pharmaceutical
Cellular locations
  • Membrane
Physical Properties
StateSolid
Experimental Properties
PropertyValueReference
Melting Point129 - 130 °CNot Available
Boiling PointNot AvailableNot Available
Water Solubility1.00e-02 g/LNot Available
LogP4.3Not Available
Predicted Properties
PropertyValueSource
Water Solubility0.01 mg/mLALOGPS
logP4.36ALOGPS
logP4.44ChemAxon
logS-4.5ALOGPS
pKa (Strongest Acidic)11.53ChemAxon
pKa (Strongest Basic)8.77ChemAxon
Physiological Charge1ChemAxon
Hydrogen Acceptor Count3ChemAxon
Hydrogen Donor Count1ChemAxon
Polar Surface Area49.77 Å2ChemAxon
Rotatable Bond Count10ChemAxon
Refractivity105.26 m3·mol-1ChemAxon
Polarizability41.25 Å3ChemAxon
Number of Rings2ChemAxon
Bioavailability1ChemAxon
Rule of FiveYesChemAxon
Ghose FilterYesChemAxon
Veber's RuleYesChemAxon
MDDR-like RuleYesChemAxon
Spectra
Spectra
Spectrum TypeDescriptionSplash Key
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-QFT , positivesplash10-0a4i-0009000000-ca7fded3c414981568e1View in MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-QFT , positivesplash10-0a4i-6809000000-96b23747cce7288ac89aView in MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-QFT , positivesplash10-0597-9700000000-d3a66f5713202ca9c1a4View in MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-QFT , positivesplash10-0abc-9500000000-71ea5dc94f4b2826c6abView in MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-QFT , positivesplash10-0abc-9400000000-4fd7390913d44a84a47eView in MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-QFT , positivesplash10-0adi-9200000000-4ee96335c41ac4541fddView in MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-QTOF , positivesplash10-0a4i-0009000000-1db2750867b2b3a978a6View in MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-QTOF , positivesplash10-0a4i-1309000000-8015ca27a0f3148e2038View in MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-QTOF , positivesplash10-0596-8900000000-c19752bfc85d658650c9View in MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-QTOF , positivesplash10-0abc-9600000000-2ba4db19cf29c878577aView in MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-QTOF , positivesplash10-0adl-9300000000-79de4e5ce2d791c91567View in MoNA
LC-MS/MSLC-MS/MS Spectrum - , positivesplash10-0a4i-0239000000-ae8df1c9b5ec536100ddView in MoNA
LC-MS/MSLC-MS/MS Spectrum - , positivesplash10-0a4i-1529000000-23d56124ac4d3f859ebeView in MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-QFT , positivesplash10-0a4i-8609000000-b2a50c9ada94fb87686aView in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 10V, PositiveNot Available
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 20V, PositiveNot Available
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 40V, PositiveNot Available
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 10V, NegativeNot Available
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 20V, NegativeNot Available
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 40V, NegativeNot Available
Biological Properties
Cellular Locations
  • Membrane
Biofluid Locations
  • Blood
  • Urine
Tissue LocationNot Available
PathwaysNot Available
Normal Concentrations
BiofluidStatusValueAgeSexConditionReferenceDetails
BloodExpected but not QuantifiedNot ApplicableNot AvailableNot AvailableTaking drug identified by DrugBank entry DB01062
  • Not Applicable
details
UrineExpected but not QuantifiedNot ApplicableNot AvailableNot AvailableTaking drug identified by DrugBank entry DB01062
  • Not Applicable
details
Abnormal Concentrations
Not Available
Associated Disorders and Diseases
Disease ReferencesNone
Associated OMIM IDsNone
DrugBank IDDB01062
DrugBank Metabolite IDNot Available
Phenol Explorer Compound IDNot Available
Phenol Explorer Metabolite IDNot Available
FoodDB IDNot Available
KNApSAcK IDNot Available
Chemspider ID4473
KEGG Compound IDC07360
BioCyc IDNot Available
BiGG IDNot Available
Wikipedia LinkOxybutynin
NuGOwiki LinkHMDB15195
Metagene LinkHMDB15195
METLIN IDNot Available
PubChem Compound4634
PDB IDNot Available
ChEBI ID7856
References
Synthesis ReferenceNot Available
Material Safety Data Sheet (MSDS)Download (PDF)
General References
  1. Tupker RA, Harmsze AM, Deneer VH: Oxybutynin therapy for generalized hyperhidrosis. Arch Dermatol. 2006 Aug;142(8):1065-6. [PubMed:16924061 ]
  2. Mijnhout GS, Kloosterman H, Simsek S, Strack van Schijndel RJ, Netelenbos JC: Oxybutynin: dry days for patients with hyperhidrosis. Neth J Med. 2006 Oct;64(9):326-8. [PubMed:17057269 ]
  3. Schollhammer M, Misery L: Treatment of hyperhidrosis with oxybutynin. Arch Dermatol. 2007 Apr;143(4):544-5. [PubMed:17438194 ]

Enzymes

General function:
Involved in monooxygenase activity
Specific function:
Cytochromes P450 are a group of heme-thiolate monooxygenases. In liver microsomes, this enzyme is involved in an NADPH-dependent electron transport pathway. It performs a variety of oxidation reactions (e.g. caffeine 8-oxidation, omeprazole sulphoxidation, midazolam 1'-hydroxylation and midazolam 4-hydroxylation) of structurally unrelated compounds, including steroids, fatty acids, and xenobiotics. Acts as a 1,8-cineole 2-exo-monooxygenase. The enzyme also hydroxylates etoposide.
Gene Name:
CYP3A4
Uniprot ID:
P08684
Molecular weight:
57255.585
References
  1. Yaich M, Popon M, Medard Y, Aigrain EJ: In-vitro cytochrome P450 dependent metabolism of oxybutynin to N-deethyloxybutynin in humans. Pharmacogenetics. 1998 Oct;8(5):449-51. [PubMed:9825837 ]
  2. Preissner S, Kroll K, Dunkel M, Senger C, Goldsobel G, Kuzman D, Guenther S, Winnenburg R, Schroeder M, Preissner R: SuperCYP: a comprehensive database on Cytochrome P450 enzymes including a tool for analysis of CYP-drug interactions. Nucleic Acids Res. 2010 Jan;38(Database issue):D237-43. doi: 10.1093/nar/gkp970. Epub 2009 Nov 24. [PubMed:19934256 ]
General function:
Involved in monooxygenase activity
Specific function:
Responsible for the metabolism of many drugs and environmental chemicals that it oxidizes. It is involved in the metabolism of drugs such as antiarrhythmics, adrenoceptor antagonists, and tricyclic antidepressants.
Gene Name:
CYP2D6
Uniprot ID:
P10635
Molecular weight:
55768.94
References
  1. Preissner S, Kroll K, Dunkel M, Senger C, Goldsobel G, Kuzman D, Guenther S, Winnenburg R, Schroeder M, Preissner R: SuperCYP: a comprehensive database on Cytochrome P450 enzymes including a tool for analysis of CYP-drug interactions. Nucleic Acids Res. 2010 Jan;38(Database issue):D237-43. doi: 10.1093/nar/gkp970. Epub 2009 Nov 24. [PubMed:19934256 ]
General function:
Involved in monooxygenase activity
Specific function:
Cytochromes P450 are a group of heme-thiolate monooxygenases. In liver microsomes, this enzyme is involved in an NADPH-dependent electron transport pathway. It oxidizes a variety of structurally unrelated compounds, including steroids, fatty acids, and xenobiotics.
Gene Name:
CYP3A5
Uniprot ID:
P20815
Molecular weight:
57108.065
References
  1. Preissner S, Kroll K, Dunkel M, Senger C, Goldsobel G, Kuzman D, Guenther S, Winnenburg R, Schroeder M, Preissner R: SuperCYP: a comprehensive database on Cytochrome P450 enzymes including a tool for analysis of CYP-drug interactions. Nucleic Acids Res. 2010 Jan;38(Database issue):D237-43. doi: 10.1093/nar/gkp970. Epub 2009 Nov 24. [PubMed:19934256 ]
General function:
Involved in monooxygenase activity
Specific function:
Cytochromes P450 are a group of heme-thiolate monooxygenases. In liver microsomes, this enzyme is involved in an NADPH-dependent electron transport pathway. It oxidizes a variety of structurally unrelated compounds, including steroids, fatty acids, and xenobiotics. In the epoxidation of arachidonic acid it generates only 14,15- and 11,12-cis-epoxyeicosatrienoic acids. It is the principal enzyme responsible for the metabolism the anti-cancer drug paclitaxel (taxol).
Gene Name:
CYP2C8
Uniprot ID:
P10632
Molecular weight:
55824.275
References
  1. Walsky RL, Gaman EA, Obach RS: Examination of 209 drugs for inhibition of cytochrome P450 2C8. J Clin Pharmacol. 2005 Jan;45(1):68-78. [PubMed:15601807 ]
  2. Preissner S, Kroll K, Dunkel M, Senger C, Goldsobel G, Kuzman D, Guenther S, Winnenburg R, Schroeder M, Preissner R: SuperCYP: a comprehensive database on Cytochrome P450 enzymes including a tool for analysis of CYP-drug interactions. Nucleic Acids Res. 2010 Jan;38(Database issue):D237-43. doi: 10.1093/nar/gkp970. Epub 2009 Nov 24. [PubMed:19934256 ]
General function:
Involved in G-protein coupled receptor protein signaling pathway
Specific function:
The muscarinic acetylcholine receptor mediates various cellular responses, including inhibition of adenylate cyclase, breakdown of phosphoinositides and modulation of potassium channels through the action of G proteins. Primary transducing effect is Pi turnover
Gene Name:
CHRM3
Uniprot ID:
P20309
Molecular weight:
66127.4
References
  1. Overington JP, Al-Lazikani B, Hopkins AL: How many drug targets are there? Nat Rev Drug Discov. 2006 Dec;5(12):993-6. [PubMed:17139284 ]
  2. Imming P, Sinning C, Meyer A: Drugs, their targets and the nature and number of drug targets. Nat Rev Drug Discov. 2006 Oct;5(10):821-34. [PubMed:17016423 ]
  3. Baldwin CM, Keating GM: Transdermal oxybutynin. Drugs. 2009;69(3):327-37. doi: 10.2165/00003495-200969030-00008. [PubMed:19275276 ]
  4. Ito Y, Oyunzul L, Yoshida A, Fujino T, Noguchi Y, Yuyama H, Ohtake A, Suzuki M, Sasamata M, Matsui M, Yamada S: Comparison of muscarinic receptor selectivity of solifenacin and oxybutynin in the bladder and submandibular gland of muscarinic receptor knockout mice. Eur J Pharmacol. 2009 Aug 1;615(1-3):201-6. doi: 10.1016/j.ejphar.2009.04.068. Epub 2009 May 13. [PubMed:19446545 ]
  5. Sinha S, Gupta S, Malhotra S, Krishna NS, Meru AV, Babu V, Bansal V, Garg M, Kumar N, Chugh A, Ray A: AE9C90CB: a novel, bladder-selective muscarinic receptor antagonist for the treatment of overactive bladder. Br J Pharmacol. 2010 Jul;160(5):1119-27. doi: 10.1111/j.1476-5381.2010.00752.x. [PubMed:20590605 ]
  6. Oki T, Kageyama A, Takagi Y, Uchida S, Yamada S: Comparative evaluation of central muscarinic receptor binding activity by oxybutynin, tolterodine and darifenacin used to treat overactive bladder. J Urol. 2007 Feb;177(2):766-70. [PubMed:17222678 ]
  7. Maruyama S, Oki T, Otsuka A, Shinbo H, Ozono S, Kageyama S, Mikami Y, Araki I, Takeda M, Masuyama K, Yamada S: Human muscarinic receptor binding characteristics of antimuscarinic agents to treat overactive bladder. J Urol. 2006 Jan;175(1):365-9. [PubMed:16406943 ]
  8. Chen X, Ji ZL, Chen YZ: TTD: Therapeutic Target Database. Nucleic Acids Res. 2002 Jan 1;30(1):412-5. [PubMed:11752352 ]
General function:
Involved in G-protein coupled receptor protein signaling pathway
Specific function:
The muscarinic acetylcholine receptor mediates various cellular responses, including inhibition of adenylate cyclase, breakdown of phosphoinositides and modulation of potassium channels through the action of G proteins. Primary transducing effect is Pi turnover
Gene Name:
CHRM1
Uniprot ID:
P11229
Molecular weight:
51420.4
References
  1. Overington JP, Al-Lazikani B, Hopkins AL: How many drug targets are there? Nat Rev Drug Discov. 2006 Dec;5(12):993-6. [PubMed:17139284 ]
  2. Imming P, Sinning C, Meyer A: Drugs, their targets and the nature and number of drug targets. Nat Rev Drug Discov. 2006 Oct;5(10):821-34. [PubMed:17016423 ]
  3. Sinha S, Gupta S, Malhotra S, Krishna NS, Meru AV, Babu V, Bansal V, Garg M, Kumar N, Chugh A, Ray A: AE9C90CB: a novel, bladder-selective muscarinic receptor antagonist for the treatment of overactive bladder. Br J Pharmacol. 2010 Jul;160(5):1119-27. doi: 10.1111/j.1476-5381.2010.00752.x. [PubMed:20590605 ]
  4. Oki T, Kageyama A, Takagi Y, Uchida S, Yamada S: Comparative evaluation of central muscarinic receptor binding activity by oxybutynin, tolterodine and darifenacin used to treat overactive bladder. J Urol. 2007 Feb;177(2):766-70. [PubMed:17222678 ]
  5. Maruyama S, Oki T, Otsuka A, Shinbo H, Ozono S, Kageyama S, Mikami Y, Araki I, Takeda M, Masuyama K, Yamada S: Human muscarinic receptor binding characteristics of antimuscarinic agents to treat overactive bladder. J Urol. 2006 Jan;175(1):365-9. [PubMed:16406943 ]
General function:
Involved in G-protein coupled receptor protein signaling pathway
Specific function:
The muscarinic acetylcholine receptor mediates various cellular responses, including inhibition of adenylate cyclase, breakdown of phosphoinositides and modulation of potassium channels through the action of G proteins. Primary transducing effect is adenylate cyclase inhibition
Gene Name:
CHRM2
Uniprot ID:
P08172
Molecular weight:
51714.6
References
  1. Dmochowski R: Improving the tolerability of anticholinergic agents in the treatment of overactive bladder. Drug Saf. 2005;28(7):583-600. [PubMed:15963006 ]
  2. Nelson CP, Nahorski SR, Challiss RA: Constitutive activity and inverse agonism at the M2 muscarinic acetylcholine receptor. J Pharmacol Exp Ther. 2006 Jan;316(1):279-88. Epub 2005 Sep 27. [PubMed:16188951 ]
  3. Ito Y, Oyunzul L, Yoshida A, Fujino T, Noguchi Y, Yuyama H, Ohtake A, Suzuki M, Sasamata M, Matsui M, Yamada S: Comparison of muscarinic receptor selectivity of solifenacin and oxybutynin in the bladder and submandibular gland of muscarinic receptor knockout mice. Eur J Pharmacol. 2009 Aug 1;615(1-3):201-6. doi: 10.1016/j.ejphar.2009.04.068. Epub 2009 May 13. [PubMed:19446545 ]
  4. Sinha S, Gupta S, Malhotra S, Krishna NS, Meru AV, Babu V, Bansal V, Garg M, Kumar N, Chugh A, Ray A: AE9C90CB: a novel, bladder-selective muscarinic receptor antagonist for the treatment of overactive bladder. Br J Pharmacol. 2010 Jul;160(5):1119-27. doi: 10.1111/j.1476-5381.2010.00752.x. [PubMed:20590605 ]
  5. Oki T, Kageyama A, Takagi Y, Uchida S, Yamada S: Comparative evaluation of central muscarinic receptor binding activity by oxybutynin, tolterodine and darifenacin used to treat overactive bladder. J Urol. 2007 Feb;177(2):766-70. [PubMed:17222678 ]