You are using an unsupported browser. Please upgrade your browser to a newer version to get the best experience on Human Metabolome Database.
Record Information
Version3.6
Creation Date2012-09-06 15:16:51 UTC
Update Date2016-02-11 01:32:08 UTC
HMDB IDHMDB15269
Secondary Accession NumbersNone
Metabolite Identification
Common NameSulfinpyrazone
DescriptionSulfinpyrazone is only found in individuals that have used or taken this drug. It is a uricosuric drug that is used to reduce the serum urate levels in gout therapy. It lacks anti-inflammatory, analgesic, and diuretic properties. [PubChem]Sulfinpyrazone is an oral uricosuric agent (pyrazolone derivative) used to treat chronic or intermittent gouty arthritis. Sulfinpyrazone competitively inhibits the reabsorption of uric acid at the proximal convoluted tubule, thereby facilitating urinary excretion of uric acid and decreasing plasma urate concentrations. This is likely done through inhibition of the urate anion transporter (hURAT1) as well as the human organic anion transporter 4 (hOAT4). Sulfinpyrazone is not intended for the treatment of acute attacks because it lacks therapeutically useful analgesic and anti-inflammatory effects. Sulfinpyrazone and its sulfide metabolite possess COX inhibitory effects. Sulfinpyrazone has also been shown to be a UDP-glucuronsyltransferase inhibitor and a very potent CYP2C9 inhibitor. Sulfinpyrazone is also known to be a cystic fibrosis transmembrane conductance regulator (CFTR) inhibitor as well as an inhibitor of several multridrug resistance proteins (MRPs).
Structure
Thumb
Synonyms
ValueSource
1,2-Diphenyl-3,5-dioxo-4-(2-phenylsulfinylethyl)pyrazolidineChEBI
1,2-Diphenyl-4-(2'-phenylsulfinethyl)-3,5-pyrazolidinedioneChEBI
4-(2-Benzenesulfinylethyl)-1,2-diphenylpyrazolidine-3,5-dioneChEBI
AnturaneChEBI
SulfoxyphenylpyrazolidineChEBI
1,2-Diphenyl-3,5-dioxo-4-(2-phenylsulphinylethyl)pyrazolidineGenerator
SulphinpyrazoneGenerator
1,2-Diphenyl-4-(2'-phenylsulphinethyl)-3,5-pyrazolidinedioneGenerator
4-(2-Benzenesulphinylethyl)-1,2-diphenylpyrazolidine-3,5-dioneGenerator
SulphoxyphenylpyrazolidineGenerator
DiphenylpyrazoneHMDB
SulfinpyrazineHMDB
SulfinpyrazonHMDB
Usaf ge-13HMDB
Chemical FormulaC23H20N2O3S
Average Molecular Weight404.482
Monoisotopic Molecular Weight404.119463206
IUPAC Name4-[2-(benzenesulfinyl)ethyl]-1,2-diphenylpyrazolidine-3,5-dione
Traditional Namesulfinpyrazone
CAS Registry Number57-96-5
SMILES
O=C1C(CCS(=O)C2=CC=CC=C2)C(=O)N(N1C1=CC=CC=C1)C1=CC=CC=C1
InChI Identifier
InChI=1S/C23H20N2O3S/c26-22-21(16-17-29(28)20-14-8-3-9-15-20)23(27)25(19-12-6-2-7-13-19)24(22)18-10-4-1-5-11-18/h1-15,21H,16-17H2
InChI KeyInChIKey=MBGGBVCUIVRRBF-UHFFFAOYSA-N
Chemical Taxonomy
DescriptionThis compound belongs to the class of organic compounds known as benzene and substituted derivatives. These are aromatic compounds containing one monocyclic ring system consisting of benzene.
KingdomOrganic compounds
Super ClassBenzenoids
ClassBenzene and substituted derivatives
Sub ClassNot Available
Direct ParentBenzene and substituted derivatives
Alternative Parents
Substituents
  • 1,3-dicarbonyl compound
  • Pyrazolidinone
  • Monocyclic benzene moiety
  • Pyrazolidine
  • Sulfoxide
  • Carboxylic acid hydrazide
  • Carboxamide group
  • Azacycle
  • Organoheterocyclic compound
  • Sulfinyl compound
  • Carboxylic acid derivative
  • Hydrocarbon derivative
  • Organosulfur compound
  • Organooxygen compound
  • Organonitrogen compound
  • Carbonyl group
  • Aromatic heteromonocyclic compound
Molecular FrameworkAromatic heteromonocyclic compounds
External DescriptorsNot Available
Ontology
StatusExpected but not Quantified
Origin
  • Drug
Biofunction
  • Uricosuric Agents
Application
  • Pharmaceutical
Cellular locations
  • Cytoplasm
  • Membrane
Physical Properties
StateSolid
Experimental Properties
PropertyValueReference
Melting Point136 - 137 °CNot Available
Boiling PointNot AvailableNot Available
Water Solubility3.23e-01 g/LNot Available
LogP2.4Not Available
Predicted Properties
PropertyValueSource
Water Solubility0.32 mg/mLALOGPS
logP2.92ALOGPS
logP3.19ChemAxon
logS-3.1ALOGPS
pKa (Strongest Acidic)3.41ChemAxon
pKa (Strongest Basic)-6.7ChemAxon
Physiological Charge-1ChemAxon
Hydrogen Acceptor Count3ChemAxon
Hydrogen Donor Count0ChemAxon
Polar Surface Area57.69 Å2ChemAxon
Rotatable Bond Count6ChemAxon
Refractivity113.62 m3·mol-1ChemAxon
Polarizability42.15 Å3ChemAxon
Number of Rings4ChemAxon
Bioavailability1ChemAxon
Rule of FiveYesChemAxon
Ghose FilterYesChemAxon
Veber's RuleYesChemAxon
MDDR-like RuleYesChemAxon
Spectra
SpectraNot Available
Biological Properties
Cellular Locations
  • Cytoplasm
  • Membrane
Biofluid Locations
  • Blood
  • Urine
Tissue LocationNot Available
PathwaysNot Available
Normal Concentrations
BiofluidStatusValueAgeSexConditionReferenceDetails
BloodExpected but not QuantifiedNot ApplicableNot AvailableNot AvailableTaking drug identified by DrugBank entry DB01138
  • Not Applicable
details
UrineExpected but not QuantifiedNot ApplicableNot AvailableNot AvailableTaking drug identified by DrugBank entry DB01138
  • Not Applicable
details
Abnormal Concentrations
Not Available
Associated Disorders and Diseases
Disease ReferencesNone
Associated OMIM IDsNone
DrugBank IDDB01138
DrugBank Metabolite IDNot Available
Phenol Explorer Compound IDNot Available
Phenol Explorer Metabolite IDNot Available
FoodDB IDNot Available
KNApSAcK IDNot Available
Chemspider ID5149
KEGG Compound IDC07317
BioCyc IDNot Available
BiGG IDNot Available
Wikipedia LinkSulfinpyrazone
NuGOwiki LinkHMDB15269
Metagene LinkHMDB15269
METLIN IDNot Available
PubChem Compound5342
PDB IDNot Available
ChEBI ID9342
References
Synthesis ReferenceNot Available
Material Safety Data Sheet (MSDS)Not Available
General ReferencesNot Available

Enzymes

General function:
Involved in monooxygenase activity
Specific function:
Cytochromes P450 are a group of heme-thiolate monooxygenases. In liver microsomes, this enzyme is involved in an NADPH-dependent electron transport pathway. It performs a variety of oxidation reactions (e.g. caffeine 8-oxidation, omeprazole sulphoxidation, midazolam 1'-hydroxylation and midazolam 4-hydroxylation) of structurally unrelated compounds, including steroids, fatty acids, and xenobiotics. Acts as a 1,8-cineole 2-exo-monooxygenase. The enzyme also hydroxylates etoposide.
Gene Name:
CYP3A4
Uniprot ID:
P08684
Molecular weight:
57255.585
References
  1. Zhou SF, Zhou ZW, Yang LP, Cai JP: Substrates, inducers, inhibitors and structure-activity relationships of human Cytochrome P450 2C9 and implications in drug development. Curr Med Chem. 2009;16(27):3480-675. Epub 2009 Sep 1. [19515014 ]
  2. Preissner S, Kroll K, Dunkel M, Senger C, Goldsobel G, Kuzman D, Guenther S, Winnenburg R, Schroeder M, Preissner R: SuperCYP: a comprehensive database on Cytochrome P450 enzymes including a tool for analysis of CYP-drug interactions. Nucleic Acids Res. 2010 Jan;38(Database issue):D237-43. Epub 2009 Nov 24. [19934256 ]
General function:
Involved in monooxygenase activity
Specific function:
Cytochromes P450 are a group of heme-thiolate monooxygenases. In liver microsomes, this enzyme is involved in an NADPH-dependent electron transport pathway. It oxidizes a variety of structurally unrelated compounds, including steroids, fatty acids, and xenobiotics. This enzyme contributes to the wide pharmacokinetics variability of the metabolism of drugs such as S-warfarin, diclofenac, phenytoin, tolbutamide and losartan.
Gene Name:
CYP2C9
Uniprot ID:
P11712
Molecular weight:
55627.365
References
  1. Zhou SF, Zhou ZW, Yang LP, Cai JP: Substrates, inducers, inhibitors and structure-activity relationships of human Cytochrome P450 2C9 and implications in drug development. Curr Med Chem. 2009;16(27):3480-675. Epub 2009 Sep 1. [19515014 ]
  2. Preissner S, Kroll K, Dunkel M, Senger C, Goldsobel G, Kuzman D, Guenther S, Winnenburg R, Schroeder M, Preissner R: SuperCYP: a comprehensive database on Cytochrome P450 enzymes including a tool for analysis of CYP-drug interactions. Nucleic Acids Res. 2010 Jan;38(Database issue):D237-43. Epub 2009 Nov 24. [19934256 ]
General function:
Involved in monooxygenase activity
Specific function:
Cytochromes P450 are a group of heme-thiolate monooxygenases. In liver microsomes, this enzyme is involved in an NADPH-dependent electron transport pathway. It oxidizes a variety of structurally unrelated compounds, including steroids, fatty acids, and xenobiotics. Acts as a 1,4-cineole 2-exo-monooxygenase.
Gene Name:
CYP2B6
Uniprot ID:
P20813
Molecular weight:
56277.81
References
  1. Preissner S, Kroll K, Dunkel M, Senger C, Goldsobel G, Kuzman D, Guenther S, Winnenburg R, Schroeder M, Preissner R: SuperCYP: a comprehensive database on Cytochrome P450 enzymes including a tool for analysis of CYP-drug interactions. Nucleic Acids Res. 2010 Jan;38(Database issue):D237-43. Epub 2009 Nov 24. [19934256 ]
General function:
Involved in monooxygenase activity
Specific function:
Cytochromes P450 are a group of heme-thiolate monooxygenases. In liver microsomes, this enzyme is involved in an NADPH-dependent electron transport pathway. It oxidizes a variety of structurally unrelated compounds, including steroids, fatty acids, and xenobiotics. In the epoxidation of arachidonic acid it generates only 14,15- and 11,12-cis-epoxyeicosatrienoic acids. It is the principal enzyme responsible for the metabolism the anti-cancer drug paclitaxel (taxol).
Gene Name:
CYP2C8
Uniprot ID:
P10632
Molecular weight:
55824.275
References
  1. Preissner S, Kroll K, Dunkel M, Senger C, Goldsobel G, Kuzman D, Guenther S, Winnenburg R, Schroeder M, Preissner R: SuperCYP: a comprehensive database on Cytochrome P450 enzymes including a tool for analysis of CYP-drug interactions. Nucleic Acids Res. 2010 Jan;38(Database issue):D237-43. Epub 2009 Nov 24. [19934256 ]

Transporters

General function:
Involved in ATP binding
Specific function:
Mediates hepatobiliary excretion of numerous organic anions. May function as a cellular cisplatin transporter
Gene Name:
ABCC2
Uniprot ID:
Q92887
Molecular weight:
174205.6
References
  1. Bakos E, Evers R, Sinko E, Varadi A, Borst P, Sarkadi B: Interactions of the human multidrug resistance proteins MRP1 and MRP2 with organic anions. Mol Pharmacol. 2000 Apr;57(4):760-8. [10727523 ]
  2. Evers R, de Haas M, Sparidans R, Beijnen J, Wielinga PR, Lankelma J, Borst P: Vinblastine and sulfinpyrazone export by the multidrug resistance protein MRP2 is associated with glutathione export. Br J Cancer. 2000 Aug;83(3):375-83. [10917554 ]
  3. Morrow CS, Smitherman PK, Townsend AJ: Role of multidrug-resistance protein 2 in glutathione S-transferase P1-1-mediated resistance to 4-nitroquinoline 1-oxide toxicities in HepG2 cells. Mol Carcinog. 2000 Nov;29(3):170-8. [11108662 ]
  4. Ito K, Oleschuk CJ, Westlake C, Vasa MZ, Deeley RG, Cole SP: Mutation of Trp1254 in the multispecific organic anion transporter, multidrug resistance protein 2 (MRP2) (ABCC2), alters substrate specificity and results in loss of methotrexate transport activity. J Biol Chem. 2001 Oct 12;276(41):38108-14. Epub 2001 Aug 10. [11500505 ]
  5. Flanagan SD, Cummins CL, Susanto M, Liu X, Takahashi LH, Benet LZ: Comparison of furosemide and vinblastine secretion from cell lines overexpressing multidrug resistance protein (P-glycoprotein) and multidrug resistance-associated proteins (MRP1 and MRP2). Pharmacology. 2002;64(3):126-34. [11834888 ]
  6. Hagos Y, Stein D, Ugele B, Burckhardt G, Bahn A: Human renal organic anion transporter 4 operates as an asymmetric urate transporter. J Am Soc Nephrol. 2007 Feb;18(2):430-9. Epub 2007 Jan 17. [17229912 ]
General function:
Involved in ATP binding
Specific function:
Mediates export of organic anions and drugs from the cytoplasm. Mediates ATP-dependent transport of glutathione and glutathione conjugates, leukotriene C4, estradiol-17-beta-o- glucuronide, methotrexate, antiviral drugs and other xenobiotics. Confers resistance to anticancer drugs. Hydrolyzes ATP with low efficiency
Gene Name:
ABCC1
Uniprot ID:
P33527
Molecular weight:
171589.5
References
  1. Evers R, de Haas M, Sparidans R, Beijnen J, Wielinga PR, Lankelma J, Borst P: Vinblastine and sulfinpyrazone export by the multidrug resistance protein MRP2 is associated with glutathione export. Br J Cancer. 2000 Aug;83(3):375-83. [10917554 ]
  2. Morrow CS, Smitherman PK, Diah SK, Schneider E, Townsend AJ: Coordinated action of glutathione S-transferases (GSTs) and multidrug resistance protein 1 (MRP1) in antineoplastic drug detoxification. Mechanism of GST A1-1- and MRP1-associated resistance to chlorambucil in MCF7 breast carcinoma cells. J Biol Chem. 1998 Aug 7;273(32):20114-20. [9685354 ]
  3. Bakos E, Evers R, Sinko E, Varadi A, Borst P, Sarkadi B: Interactions of the human multidrug resistance proteins MRP1 and MRP2 with organic anions. Mol Pharmacol. 2000 Apr;57(4):760-8. [10727523 ]
  4. Depeille P, Cuq P, Mary S, Passagne I, Evrard A, Cupissol D, Vian L: Glutathione S-transferase M1 and multidrug resistance protein 1 act in synergy to protect melanoma cells from vincristine effects. Mol Pharmacol. 2004 Apr;65(4):897-905. [15044619 ]
  5. Raggers RJ, van Helvoort A, Evers R, van Meer G: The human multidrug resistance protein MRP1 translocates sphingolipid analogs across the plasma membrane. J Cell Sci. 1999 Feb;112 ( Pt 3):415-22. [9885294 ]
  6. Chen X, Ji ZL, Chen YZ: TTD: Therapeutic Target Database. Nucleic Acids Res. 2002 Jan 1;30(1):412-5. [11752352 ]
General function:
Involved in ATP binding
Specific function:
May participate directly in the active transport of drugs into subcellular organelles or influence drug distribution indirectly. Transports glutathione conjugates as leukotriene-c4 (LTC4) and N-ethylmaleimide S-glutathione (NEM-GS)
Gene Name:
ABCC6
Uniprot ID:
O95255
Molecular weight:
164904.8
References
  1. Chen ZS, Hopper-Borge E, Belinsky MG, Shchaveleva I, Kotova E, Kruh GD: Characterization of the transport properties of human multidrug resistance protein 7 (MRP7, ABCC10). Mol Pharmacol. 2003 Feb;63(2):351-8. [12527806 ]
General function:
Involved in ATP binding
Specific function:
May act as an inducible transporter in the biliary and intestinal excretion of organic anions. Acts as an alternative route for the export of bile acids and glucuronides from cholestatic hepatocytes
Gene Name:
ABCC3
Uniprot ID:
O15438
Molecular weight:
169341.1
References
  1. Zelcer N, Saeki T, Reid G, Beijnen JH, Borst P: Characterization of drug transport by the human multidrug resistance protein 3 (ABCC3). J Biol Chem. 2001 Dec 7;276(49):46400-7. [11581266 ]
General function:
Involved in ATP binding
Specific function:
Energy-dependent efflux pump responsible for decreased drug accumulation in multidrug-resistant cells
Gene Name:
ABCB1
Uniprot ID:
P08183
Molecular weight:
141477.3
References
  1. Honda Y, Ushigome F, Koyabu N, Morimoto S, Shoyama Y, Uchiumi T, Kuwano M, Ohtani H, Sawada Y: Effects of grapefruit juice and orange juice components on P-glycoprotein- and MRP2-mediated drug efflux. Br J Pharmacol. 2004 Dec;143(7):856-64. Epub 2004 Oct 25. [15504753 ]
General function:
Involved in ATP binding
Specific function:
May be an organic anion pump relevant to cellular detoxification
Gene Name:
ABCC4
Uniprot ID:
O15439
Molecular weight:
149525.3
References
  1. Chen ZS, Lee K, Walther S, Raftogianis RB, Kuwano M, Zeng H, Kruh GD: Analysis of methotrexate and folate transport by multidrug resistance protein 4 (ABCC4): MRP4 is a component of the methotrexate efflux system. Cancer Res. 2002 Jun 1;62(11):3144-50. [12036927 ]
General function:
Involved in ATP binding
Specific function:
Acts as a multispecific organic anion pump which can transport nucleotide analogs
Gene Name:
ABCC5
Uniprot ID:
O15440
Molecular weight:
160658.8
References
  1. Wijnholds J, Mol CA, van Deemter L, de Haas M, Scheffer GL, Baas F, Beijnen JH, Scheper RJ, Hatse S, De Clercq E, Balzarini J, Borst P: Multidrug-resistance protein 5 is a multispecific organic anion transporter able to transport nucleotide analogs. Proc Natl Acad Sci U S A. 2000 Jun 20;97(13):7476-81. [10840050 ]