You are using an unsupported browser. Please upgrade your browser to a newer version to get the best experience on Human Metabolome Database.
Record Information
Version4.0
Creation Date2012-09-06 15:16:52 UTC
Update Date2017-09-27 08:27:56 UTC
HMDB IDHMDB0015378
Secondary Accession Numbers
  • HMDB15378
Metabolite Identification
Common NameDocetaxel
DescriptionDocetaxel is a clinically well established anti-mitotic chemotherapy medication used mainly for the treatment of breast, ovarian, and non-small cell lung cancer. Docetaxel binds to microtubules reversibly with high affinity and has a maximum stoichiometry of 1 mole docetaxel per mole tubulin in microtubules.
Structure
Thumb
Synonyms
ValueSource
N-Debenzoyl-N-(tert-butoxycarbonyl)-10-deacetylpaclitaxelChEBI
N-Debenzoyl-N-(tert-butoxycarbonyl)-10-deacetyltaxolChEBI
TXLChEBI
Docetaxel anhydrousHMDB
Docetaxel, trihydrateHMDB
Docetaxel trihydrateMeSH
TaxotereMeSH
DocetaxolMeSH
N-Debenzoyl-N-tert-butoxycarbonyl-10-deacetyltaxolMeSH
Taxoltere metroMeSH
Docetaxel hydrateMeSH
Chemical FormulaC43H53NO14
Average Molecular Weight807.8792
Monoisotopic Molecular Weight807.346605409
IUPAC Name(1S,2S,3R,4S,7R,9S,10S,12R,15S)-4-(acetyloxy)-15-{[(2R,3S)-3-{[(tert-butoxy)carbonyl]amino}-2-hydroxy-3-phenylpropanoyl]oxy}-1,9,12-trihydroxy-10,14,17,17-tetramethyl-11-oxo-6-oxatetracyclo[11.3.1.0³,¹⁰.0⁴,⁷]heptadec-13-en-2-yl benzoate
Traditional Namedocetaxel
CAS Registry Number114977-28-5
SMILES
[H][C@@]12C[C@H](O)[C@@]3(C)C(=O)[C@H](O)C4=C(C)[C@H](C[C@@](O)([C@@H](OC(=O)C5=CC=CC=C5)[C@]3([H])[C@@]1(CO2)OC(C)=O)C4(C)C)OC(=O)[C@H](O)[C@@H](NC(=O)OC(C)(C)C)C1=CC=CC=C1
InChI Identifier
InChI=1S/C43H53NO14/c1-22-26(55-37(51)32(48)30(24-15-11-9-12-16-24)44-38(52)58-39(3,4)5)20-43(53)35(56-36(50)25-17-13-10-14-18-25)33-41(8,34(49)31(47)29(22)40(43,6)7)27(46)19-28-42(33,21-54-28)57-23(2)45/h9-18,26-28,30-33,35,46-48,53H,19-21H2,1-8H3,(H,44,52)/t26-,27-,28+,30-,31+,32+,33-,35-,41+,42-,43+/m0/s1
InChI KeyZDZOTLJHXYCWBA-VCVYQWHSSA-N
Chemical Taxonomy
DescriptionThis compound belongs to the class of organic compounds known as taxanes and derivatives. These are diterpenoids with a structure based either on the taxane skeleton, or a derivative thereof. In term of phytochemistry, several derivatives of the taxane skeleton exist: 2(3->20)-abeotaxane, 3,11-cyclotaxane, 11(15->1),11(10->9)-abeotaxane, 3,8-seco-taxane, and 11(15->1)-abeotaxane, among others. More complex skeletons have been found recently, which include the taxane-derived [3.3.3] propellane ring system.
KingdomOrganic compounds
Super ClassLipids and lipid-like molecules
ClassPrenol lipids
Sub ClassDiterpenoids
Direct ParentTaxanes and derivatives
Alternative Parents
Substituents
  • Taxane diterpenoid
  • Benzoate ester
  • Benzoic acid or derivatives
  • Tricarboxylic acid or derivatives
  • Benzoyl
  • Fatty acid ester
  • Monocyclic benzene moiety
  • Fatty acyl
  • Monosaccharide
  • Benzenoid
  • Cyclic alcohol
  • Carbamic acid ester
  • Tertiary alcohol
  • Carboxylic acid ester
  • Ketone
  • Carbonic acid derivative
  • Oxetane
  • Secondary alcohol
  • Organoheterocyclic compound
  • Oxacycle
  • Ether
  • Dialkyl ether
  • Carboxylic acid derivative
  • Polyol
  • Organic nitrogen compound
  • Hydrocarbon derivative
  • Alcohol
  • Carbonyl group
  • Organic oxide
  • Organonitrogen compound
  • Organooxygen compound
  • Organic oxygen compound
  • Organopnictogen compound
  • Aromatic heteropolycyclic compound
Molecular FrameworkAromatic heteropolycyclic compounds
External Descriptors
Ontology
Disposition

Biological Location:

  Subcellular:

  Biofluid and excreta:

  Organ and components:

Source:

Route of exposure:

  Enteral:

  Parenteral:

Process

Naturally occurring process:

  Biological process:

    Biochemical pathway:

    Cellular process:

Role

Industrial application:

  Pharmaceutical industry:

Biological role:

Indirect biological role:

Physical Properties
StateSolid
Experimental Properties
PropertyValueReference
Melting Point232 °CNot Available
Boiling PointNot AvailableNot Available
Water Solubility0.013 g/LNot Available
LogP2.4Not Available
Predicted Properties
PropertyValueSource
Water Solubility0.013 g/LALOGPS
logP2.59ALOGPS
logP2.92ChemAxon
logS-4.8ALOGPS
pKa (Strongest Acidic)10.96ChemAxon
pKa (Strongest Basic)-3ChemAxon
Physiological Charge0ChemAxon
Hydrogen Acceptor Count10ChemAxon
Hydrogen Donor Count5ChemAxon
Polar Surface Area224.45 ŲChemAxon
Rotatable Bond Count13ChemAxon
Refractivity203.9 m³·mol⁻¹ChemAxon
Polarizability82.06 ųChemAxon
Number of Rings6ChemAxon
Bioavailability0ChemAxon
Rule of FiveYesChemAxon
Ghose FilterYesChemAxon
Veber's RuleYesChemAxon
MDDR-like RuleYesChemAxon
Spectra
Spectra
Spectrum TypeDescriptionSplash Key
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 10V, Positivesplash10-0ke9-2110021900-f5d0bc483676fe5dc3e1View in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 20V, Positivesplash10-056r-6520040900-5dc2943e6be89bc86b0cView in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 40V, Positivesplash10-0a6r-6900660000-2867151287c5a0346e02View in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 10V, Negativesplash10-05iu-4410040920-b828ec76844ebea2d7a8View in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 20V, Negativesplash10-05i3-9210270300-f8577941b1621d9b82e5View in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 40V, Negativesplash10-0ab9-9300140000-7ac14648b028058fac74View in MoNA
Biological Properties
Cellular Locations
  • Cytoplasm
  • Extracellular
  • Membrane
Biofluid Locations
  • Blood
  • Urine
Tissue Location
  • Kidney
  • Liver
Pathways
NameSMPDB/PathwhizKEGG
Docetaxel PathwayPw000240Pw000240 greyscalePw000240 simpleNot Available
Displaying 1 entry
Normal Concentrations
BiofluidStatusValueAgeSexConditionReferenceDetails
BloodExpected but not Quantified Not AvailableNot AvailableTaking drug identified by DrugBank entry DB01248 details
UrineExpected but not Quantified Not AvailableNot AvailableTaking drug identified by DrugBank entry DB01248 details
Abnormal Concentrations
Not Available
Predicted Concentrations
BiofluidValueOriginal ageOriginal sexOriginal conditionComments
Blood0-1 uMAdult (>18 years old)BothNormalPredicted based on drug qualities
Blood0-1 umol/mmol creatinineAdult (>18 years old)BothNormalPredicted based on drug qualities
Associated Disorders and Diseases
Disease ReferencesNone
Associated OMIM IDsNone
DrugBank IDDB01248
DrugBank Metabolite IDDBMET00633
Phenol Explorer Compound IDNot Available
Phenol Explorer Metabolite IDNot Available
FoodDB IDNot Available
KNApSAcK IDNot Available
Chemspider ID130581
KEGG Compound IDNot Available
BioCyc IDNot Available
BiGG IDNot Available
Wikipedia LinkDocetaxel
METLIN IDNot Available
PubChem Compound148124
PDB IDTXL
ChEBI IDNot Available
References
Synthesis ReferenceNot Available
Material Safety Data Sheet (MSDS)Not Available
General References
  1. Simons K, Toomre D: Lipid rafts and signal transduction. Nat Rev Mol Cell Biol. 2000 Oct;1(1):31-9. [PubMed:11413487 ]
  2. Watson AD: Thematic review series: systems biology approaches to metabolic and cardiovascular disorders. Lipidomics: a global approach to lipid analysis in biological systems. J Lipid Res. 2006 Oct;47(10):2101-11. Epub 2006 Aug 10. [PubMed:16902246 ]
  3. Sethi JK, Vidal-Puig AJ: Thematic review series: adipocyte biology. Adipose tissue function and plasticity orchestrate nutritional adaptation. J Lipid Res. 2007 Jun;48(6):1253-62. Epub 2007 Mar 20. [PubMed:17374880 ]
  4. Lingwood D, Simons K: Lipid rafts as a membrane-organizing principle. Science. 2010 Jan 1;327(5961):46-50. doi: 10.1126/science.1174621. [PubMed:20044567 ]
  5. (). FDA label . .

Enzymes

General function:
Involved in monooxygenase activity
Specific function:
Cytochromes P450 are a group of heme-thiolate monooxygenases. In liver microsomes, this enzyme is involved in an NADPH-dependent electron transport pathway. It performs a variety of oxidation reactions (e.g. caffeine 8-oxidation, omeprazole sulphoxidation, midazolam 1'-hydroxylation and midazolam 4-hydroxylation) of structurally unrelated compounds, including steroids, fatty acids, and xenobiotics. Acts as a 1,8-cineole 2-exo-monooxygenase. The enzyme also hydroxylates etoposide.
Gene Name:
CYP3A4
Uniprot ID:
P08684
Molecular weight:
57255.585
References
  1. Preissner S, Kroll K, Dunkel M, Senger C, Goldsobel G, Kuzman D, Guenther S, Winnenburg R, Schroeder M, Preissner R: SuperCYP: a comprehensive database on Cytochrome P450 enzymes including a tool for analysis of CYP-drug interactions. Nucleic Acids Res. 2010 Jan;38(Database issue):D237-43. doi: 10.1093/nar/gkp970. Epub 2009 Nov 24. [PubMed:19934256 ]
General function:
Involved in monooxygenase activity
Specific function:
Cytochromes P450 are a group of heme-thiolate monooxygenases. In liver microsomes, this enzyme is involved in an NADPH-dependent electron transport pathway. It oxidizes a variety of structurally unrelated compounds, including steroids, fatty acids, and xenobiotics. Participates in the metabolism of an as-yet-unknown biologically active molecule that is a participant in eye development.
Gene Name:
CYP1B1
Uniprot ID:
Q16678
Molecular weight:
60845.33
References
  1. Preissner S, Kroll K, Dunkel M, Senger C, Goldsobel G, Kuzman D, Guenther S, Winnenburg R, Schroeder M, Preissner R: SuperCYP: a comprehensive database on Cytochrome P450 enzymes including a tool for analysis of CYP-drug interactions. Nucleic Acids Res. 2010 Jan;38(Database issue):D237-43. doi: 10.1093/nar/gkp970. Epub 2009 Nov 24. [PubMed:19934256 ]
General function:
Involved in monooxygenase activity
Specific function:
Cytochromes P450 are a group of heme-thiolate monooxygenases. In liver microsomes, this enzyme is involved in an NADPH-dependent electron transport pathway. It oxidizes a variety of structurally unrelated compounds, including steroids, fatty acids, and xenobiotics.
Gene Name:
CYP3A5
Uniprot ID:
P20815
Molecular weight:
57108.065
General function:
Involved in monooxygenase activity
Specific function:
Cytochromes P450 are a group of heme-thiolate monooxygenases. In liver microsomes, this enzyme is involved in an NADPH-dependent electron transport pathway. It oxidizes a variety of structurally unrelated compounds, including steroids, fatty acids, and xenobiotics.
Gene Name:
CYP3A7
Uniprot ID:
P24462
Molecular weight:
57525.03
General function:
Involved in regulation of apoptosis
Specific function:
Suppresses apoptosis in a variety of cell systems including factor-dependent lymphohematopoietic and neural cells. Regulates cell death by controlling the mitochondrial membrane permeability. Appears to function in a feedback loop system with caspases. Inhibits caspase activity either by preventing the release of cytochrome c from the mitochondria and/or by binding to the apoptosis-activating factor (APAF-1)
Gene Name:
BCL2
Uniprot ID:
P10415
Molecular weight:
26265.7
References
  1. Gligorov J, Lotz JP: Preclinical pharmacology of the taxanes: implications of the differences. Oncologist. 2004;9 Suppl 2:3-8. [PubMed:15161985 ]
  2. Marshall J, Chen H, Yang D, Figueira M, Bouker KB, Ling Y, Lippman M, Frankel SR, Hayes DF: A phase I trial of a Bcl-2 antisense (G3139) and weekly docetaxel in patients with advanced breast cancer and other solid tumors. Ann Oncol. 2004 Aug;15(8):1274-83. [PubMed:15277270 ]
  3. Inoue Y, Gika M, Abiko T, Oyama T, Saitoh Y, Yamazaki H, Nakamura M, Abe Y, Kawamura M, Kobayashi K: Bcl-2 overexpression enhances in vitro sensitivity against docetaxel in non-small cell lung cancer. Oncol Rep. 2005 Feb;13(2):259-64. [PubMed:15643508 ]
  4. Petrylak DP: Chemotherapy for androgen-independent prostate cancer. World J Urol. 2005 Feb;23(1):10-3. Epub 2005 Feb 1. [PubMed:15685445 ]
  5. Miyoshi Y, Uemura H, Kubota Y: [Treatment of androgen-independent hormone refractory prostate cancer using docetaxel]. Nihon Rinsho. 2005 Feb;63(2):298-302. [PubMed:15714982 ]
  6. Magi-Galluzzi C, Zhou M, Reuther AM, Dreicer R, Klein EA: Neoadjuvant docetaxel treatment for locally advanced prostate cancer: a clinicopathologic study. Cancer. 2007 Sep 15;110(6):1248-54. [PubMed:17674353 ]
General function:
Involved in structural molecule activity
Specific function:
Tubulin is the major constituent of microtubules. It binds two moles of GTP, one at an exchangeable site on the beta chain and one at a non-exchangeable site on the alpha-chain
Gene Name:
TUBB1
Uniprot ID:
Q9H4B7
Molecular weight:
50326.6
References
  1. Gligorov J, Lotz JP: Preclinical pharmacology of the taxanes: implications of the differences. Oncologist. 2004;9 Suppl 2:3-8. [PubMed:15161985 ]
  2. Matesanz R, Barasoain I, Yang CG, Wang L, Li X, de Ines C, Coderch C, Gago F, Barbero JJ, Andreu JM, Fang WS, Diaz JF: Optimization of taxane binding to microtubules: binding affinity dissection and incremental construction of a high-affinity analog of paclitaxel. Chem Biol. 2008 Jun;15(6):573-85. doi: 10.1016/j.chembiol.2008.05.008. [PubMed:18559268 ]
  3. Snyder JP, Nettles JH, Cornett B, Downing KH, Nogales E: The binding conformation of Taxol in beta-tubulin: a model based on electron crystallographic density. Proc Natl Acad Sci U S A. 2001 Apr 24;98(9):5312-6. Epub 2001 Apr 17. [PubMed:11309480 ]
  4. Belani CP, Eckardt J: Development of docetaxel in advanced non-small-cell lung cancer. Lung Cancer. 2004 Dec;46 Suppl 2:S3-11. [PubMed:15698529 ]

Transporters

General function:
Involved in ATP binding
Specific function:
Energy-dependent efflux pump responsible for decreased drug accumulation in multidrug-resistant cells
Gene Name:
ABCB1
Uniprot ID:
P08183
Molecular weight:
141477.3
References
  1. Wils P, Phung-Ba V, Warnery A, Lechardeur D, Raeissi S, Hidalgo IJ, Scherman D: Polarized transport of docetaxel and vinblastine mediated by P-glycoprotein in human intestinal epithelial cell monolayers. Biochem Pharmacol. 1994 Oct 7;48(7):1528-30. [PubMed:7945455 ]
  2. Shirakawa K, Takara K, Tanigawara Y, Aoyama N, Kasuga M, Komada F, Sakaeda T, Okumura K: Interaction of docetaxel ("Taxotere") with human P-glycoprotein. Jpn J Cancer Res. 1999 Dec;90(12):1380-6. [PubMed:10665657 ]