You are using an unsupported browser. Please upgrade your browser to a newer version to get the best experience on Human Metabolome Database.
Record Information
Version3.6
Creation Date2012-09-06 15:16:52 UTC
Update Date2016-02-11 01:32:55 UTC
HMDB IDHMDB15440
Secondary Accession NumbersNone
Metabolite Identification
Common NameAmobarbital
DescriptionAmobarbital is only found in individuals that have used or taken this drug. It is a barbiturate with hypnotic and sedative properties (but not antianxiety). Adverse effects are mainly a consequence of dose-related CNS depression and the risk of dependence with continued use is high. (From Martindale, The Extra Pharmacopoeia, 30th ed, p565)Amobarbital (like all barbiturates) works by binding to the GABAA receptor at either the alpha or the beta sub unit. These are binding sites that are distinct from GABA itself and also distinct from the benzodiazepine binding site. Like benzodiazepines, barbiturates potentiate the effect of GABA at this receptor. This GABAA receptor binding decreases input resistance, depresses burst and tonic firing, especially in ventrobasal and intralaminar neurons, while at the same time increasing burst duration and mean conductance at individual chloride channels; this increases both the amplitude and decay time of inhibitory postsynaptic currents. In addition to this GABA-ergic effect, barbiturates also block the AMPA receptor, a subtype of glutamate receptor. Glutamate is the principal excitatory neurotransmitter in the mammalian CNS. Amobarbital also appears to bind neuronal nicotinic acetylcholine receptors.
Structure
Thumb
Synonyms
ValueSource
5-Ethyl-5-(3-methylbutyl)-2,4,6(1H,3H,5H)-pyrimidinetrioneChEBI
5-Ethyl-5-(3-methylbutyl)barbituric acidChEBI
5-Ethyl-5-isoamylbarbituric acidChEBI
5-Ethyl-5-isopentylbarbituric acidChEBI
AmylobarbitoneChEBI
AmytalChEBI
BarbamilChEBI
BarbamylChEBI
5-Ethyl-5-(3-methylbutyl)barbitateGenerator
5-Ethyl-5-(3-methylbutyl)barbitic acidGenerator
5-Ethyl-5-isoamylbarbitateGenerator
5-Ethyl-5-isoamylbarbitic acidGenerator
5-Ethyl-5-isopentylbarbitateGenerator
5-Ethyl-5-isopentylbarbitic acidGenerator
Chemical FormulaC11H18N2O3
Average Molecular Weight226.2722
Monoisotopic Molecular Weight226.131742452
IUPAC Name5-ethyl-5-(3-methylbutyl)-1,3-diazinane-2,4,6-trione
Traditional Nameamobarbital
CAS Registry Number57-43-2
SMILES
CCC1(CCC(C)C)C(=O)NC(=O)NC1=O
InChI Identifier
InChI=1S/C11H18N2O3/c1-4-11(6-5-7(2)3)8(14)12-10(16)13-9(11)15/h7H,4-6H2,1-3H3,(H2,12,13,14,15,16)
InChI KeyInChIKey=VIROVYVQCGLCII-UHFFFAOYSA-N
Chemical Taxonomy
DescriptionThis compound belongs to the class of organic compounds known as barbituric acid derivatives. These are compounds containing a perhydropyrimidine ring substituted at C-2, -4 and -6 by oxo groups.
KingdomOrganic compounds
Super ClassOrganoheterocyclic compounds
ClassDiazines
Sub ClassPyrimidines and pyrimidine derivatives
Direct ParentBarbituric acid derivatives
Alternative Parents
Substituents
  • Barbiturate
  • Ureide
  • 1,3-diazinane
  • Urea
  • Carboxamide group
  • Azacycle
  • Carboxylic acid derivative
  • Hydrocarbon derivative
  • Organooxygen compound
  • Organonitrogen compound
  • Carbonyl group
  • Aliphatic heteromonocyclic compound
Molecular FrameworkAliphatic heteromonocyclic compounds
External Descriptors
Ontology
StatusExpected but not Quantified
Origin
  • Drug
Biofunction
  • GABA Modulators
  • Hypnotics and Sedatives
Application
  • Pharmaceutical
Cellular locations
  • Membrane
Physical Properties
StateSolid
Experimental Properties
PropertyValueReference
Melting PointNot AvailableNot Available
Boiling PointNot AvailableNot Available
Water Solubility8.97e-01 g/LNot Available
LogP2.07HANSCH,C ET AL. (1995)
Predicted Properties
PropertyValueSource
Water Solubility0.9 mg/mLALOGPS
logP1.87ALOGPS
logP1.89ChemAxon
logS-2.4ALOGPS
pKa (Strongest Acidic)8.48ChemAxon
Physiological Charge0ChemAxon
Hydrogen Acceptor Count3ChemAxon
Hydrogen Donor Count2ChemAxon
Polar Surface Area75.27 Å2ChemAxon
Rotatable Bond Count4ChemAxon
Refractivity58 m3·mol-1ChemAxon
Polarizability23.45 Å3ChemAxon
Number of Rings1ChemAxon
Bioavailability1ChemAxon
Rule of FiveYesChemAxon
Ghose FilterYesChemAxon
Veber's RuleYesChemAxon
MDDR-like RuleYesChemAxon
Spectra
Spectra
Spectrum TypeDescriptionSplash Key
MSMass Spectrum (Electron Ionization)splash10-0a4l-4900000000-8b443325c415e154ac85View in MoNA
1D NMR1H NMR SpectrumNot Available
1D NMR13C NMR SpectrumNot Available
Biological Properties
Cellular Locations
  • Membrane
Biofluid Locations
  • Blood
  • Urine
Tissue LocationNot Available
PathwaysNot Available
Normal Concentrations
BiofluidStatusValueAgeSexConditionReferenceDetails
BloodExpected but not QuantifiedNot ApplicableNot AvailableNot AvailableTaking drug identified by DrugBank entry DB01351
  • Not Applicable
details
UrineExpected but not QuantifiedNot ApplicableNot AvailableNot AvailableTaking drug identified by DrugBank entry DB01351
  • Not Applicable
details
Abnormal Concentrations
Not Available
Predicted Concentrations
BiofluidValueOriginal ageOriginal sexOriginal conditionComments
Blood0-4 uMAdult (>18 years old)BothNormalPredicted based on drug qualities
Blood0-2 umol/mmol creatinineAdult (>18 years old)BothNormalPredicted based on drug qualities
Associated Disorders and Diseases
Disease ReferencesNone
Associated OMIM IDsNone
DrugBank IDDB01351
DrugBank Metabolite IDNot Available
Phenol Explorer Compound IDNot Available
Phenol Explorer Metabolite IDNot Available
FoodDB IDNot Available
KNApSAcK IDNot Available
Chemspider ID2079
KEGG Compound IDC07536
BioCyc IDNot Available
BiGG IDNot Available
Wikipedia LinkAmobarbital
NuGOwiki LinkHMDB15440
Metagene LinkHMDB15440
METLIN IDNot Available
PubChem Compound2164
PDB IDNot Available
ChEBI ID2673
References
Synthesis ReferenceNot Available
Material Safety Data Sheet (MSDS)Not Available
General References
  1. Tang BK, Kalow W, Grey AA: Amobarbital metabolism in man: N-glucoside formation. Res Commun Chem Pathol Pharmacol. 1978 Jul;21(1):45-53. [684279 ]
  2. McCall WV: The addition of intravenous caffeine during an amobarbital interview. J Psychiatry Neurosci. 1992 Nov;17(5):195-7. [1489761 ]
  3. Soine PJ, Soine WH: High-performance liquid chromatographic determination of the diastereomers of 1-(beta-D-glucopyranosyl)amobarbital in urine. J Chromatogr. 1987 Nov 27;422:309-14. [3437019 ]
  4. Maynert EW: The alcoholic metabolites of pentobarbital and amobarbital in man. J Pharmacol Exp Ther. 1965 Oct;150(1):118-21. [5855308 ]
  5. Kim HS, Wan X, Mathers DA, Puil E: Selective GABA-receptor actions of amobarbital on thalamic neurons. Br J Pharmacol. 2004 Oct;143(4):485-94. Epub 2004 Sep 20. [15381635 ]

Enzymes

General function:
Involved in monooxygenase activity
Specific function:
Exhibits a high coumarin 7-hydroxylase activity. Can act in the hydroxylation of the anti-cancer drugs cyclophosphamide and ifosphamide. Competent in the metabolic activation of aflatoxin B1. Constitutes the major nicotine C-oxidase. Acts as a 1,4-cineole 2-exo-monooxygenase. Possesses low phenacetin O-deethylation activity.
Gene Name:
CYP2A6
Uniprot ID:
P11509
Molecular weight:
56517.005
References
  1. Preissner S, Kroll K, Dunkel M, Senger C, Goldsobel G, Kuzman D, Guenther S, Winnenburg R, Schroeder M, Preissner R: SuperCYP: a comprehensive database on Cytochrome P450 enzymes including a tool for analysis of CYP-drug interactions. Nucleic Acids Res. 2010 Jan;38(Database issue):D237-43. Epub 2009 Nov 24. [19934256 ]
General function:
Involved in ionotropic glutamate receptor activity
Specific function:
Ionotropic glutamate receptor. L-glutamate acts as an excitatory neurotransmitter at many synapses in the central nervous system. Binding of the excitatory neurotransmitter L- glutamate induces a conformation change, leading to the opening of the cation channel, and thereby converts the chemical signal to an electrical impulse. The receptor then desensitizes rapidly and enters a transient inactive state, characterized by the presence of bound agonist. May be involved in the transmission of light information from the retina to the hypothalamus. Modulates cell surface expression of NETO2
Gene Name:
GRIK2
Uniprot ID:
Q13002
Molecular weight:
102582.5
References
  1. Yamakura T, Bertaccini E, Trudell JR, Harris RA: Anesthetics and ion channels: molecular models and sites of action. Annu Rev Pharmacol Toxicol. 2001;41:23-51. [11264449 ]
  2. Krasowski MD, Harrison NL: General anaesthetic actions on ligand-gated ion channels. Cell Mol Life Sci. 1999 Aug 15;55(10):1278-303. [10487207 ]
General function:
Involved in ionotropic glutamate receptor activity
Specific function:
Ionotropic glutamate receptor. L-glutamate acts as an excitatory neurotransmitter at many synapses in the central nervous system. Binding of the excitatory neurotransmitter L- glutamate induces a conformation change, leading to the opening of the cation channel, and thereby converts the chemical signal to an electrical impulse. The receptor then desensitizes rapidly and enters a transient inactive state, characterized by the presence of bound agonist
Gene Name:
GRIA2
Uniprot ID:
P42262
Molecular weight:
98820.3
References
  1. Yamakura T, Bertaccini E, Trudell JR, Harris RA: Anesthetics and ion channels: molecular models and sites of action. Annu Rev Pharmacol Toxicol. 2001;41:23-51. [11264449 ]
  2. Krasowski MD, Harrison NL: General anaesthetic actions on ligand-gated ion channels. Cell Mol Life Sci. 1999 Aug 15;55(10):1278-303. [10487207 ]
General function:
Involved in ion transport
Specific function:
GABA, the major inhibitory neurotransmitter in the vertebrate brain, mediates neuronal inhibition by binding to the GABA/benzodiazepine receptor and opening an integral chloride channel
Gene Name:
GABRA1
Uniprot ID:
P14867
Molecular weight:
51801.4
References
  1. Whiting PJ: The GABAA receptor gene family: new opportunities for drug development. Curr Opin Drug Discov Devel. 2003 Sep;6(5):648-57. [14579514 ]
  2. Mehta AK, Ticku MK: An update on GABAA receptors. Brain Res Brain Res Rev. 1999 Apr;29(2-3):196-217. [10209232 ]
  3. Krasowski MD, Harrison NL: General anaesthetic actions on ligand-gated ion channels. Cell Mol Life Sci. 1999 Aug 15;55(10):1278-303. [10487207 ]
  4. Yamakura T, Bertaccini E, Trudell JR, Harris RA: Anesthetics and ion channels: molecular models and sites of action. Annu Rev Pharmacol Toxicol. 2001;41:23-51. [11264449 ]
  5. Chen X, Ji ZL, Chen YZ: TTD: Therapeutic Target Database. Nucleic Acids Res. 2002 Jan 1;30(1):412-5. [11752352 ]
General function:
Involved in ion transport
Specific function:
GABA, the major inhibitory neurotransmitter in the vertebrate brain, mediates neuronal inhibition by binding to the GABA/benzodiazepine receptor and opening an integral chloride channel
Gene Name:
GABRA2
Uniprot ID:
P47869
Molecular weight:
51325.9
References
  1. Yamakura T, Bertaccini E, Trudell JR, Harris RA: Anesthetics and ion channels: molecular models and sites of action. Annu Rev Pharmacol Toxicol. 2001;41:23-51. [11264449 ]
  2. Mehta AK, Ticku MK: An update on GABAA receptors. Brain Res Brain Res Rev. 1999 Apr;29(2-3):196-217. [10209232 ]
General function:
Involved in ion transport
Specific function:
GABA, the major inhibitory neurotransmitter in the vertebrate brain, mediates neuronal inhibition by binding to the GABA/benzodiazepine receptor and opening an integral chloride channel
Gene Name:
GABRA3
Uniprot ID:
P34903
Molecular weight:
55164.1
References
  1. Yamakura T, Bertaccini E, Trudell JR, Harris RA: Anesthetics and ion channels: molecular models and sites of action. Annu Rev Pharmacol Toxicol. 2001;41:23-51. [11264449 ]
  2. Mehta AK, Ticku MK: An update on GABAA receptors. Brain Res Brain Res Rev. 1999 Apr;29(2-3):196-217. [10209232 ]
General function:
Involved in ion transport
Specific function:
GABA, the major inhibitory neurotransmitter in the vertebrate brain, mediates neuronal inhibition by binding to the GABA/benzodiazepine receptor and opening an integral chloride channel
Gene Name:
GABRA4
Uniprot ID:
P48169
Molecular weight:
61622.6
References
  1. Mehta AK, Ticku MK: An update on GABAA receptors. Brain Res Brain Res Rev. 1999 Apr;29(2-3):196-217. [10209232 ]
General function:
Involved in ion transport
Specific function:
GABA, the major inhibitory neurotransmitter in the vertebrate brain, mediates neuronal inhibition by binding to the GABA/benzodiazepine receptor and opening an integral chloride channel
Gene Name:
GABRA5
Uniprot ID:
P31644
Molecular weight:
52145.6
References
  1. Yamakura T, Bertaccini E, Trudell JR, Harris RA: Anesthetics and ion channels: molecular models and sites of action. Annu Rev Pharmacol Toxicol. 2001;41:23-51. [11264449 ]
  2. Mehta AK, Ticku MK: An update on GABAA receptors. Brain Res Brain Res Rev. 1999 Apr;29(2-3):196-217. [10209232 ]
General function:
Involved in ion transport
Specific function:
GABA, the major inhibitory neurotransmitter in the vertebrate brain, mediates neuronal inhibition by binding to the GABA/benzodiazepine receptor and opening an integral chloride channel
Gene Name:
GABRA6
Uniprot ID:
Q16445
Molecular weight:
51023.7
References
  1. Mehta AK, Ticku MK: An update on GABAA receptors. Brain Res Brain Res Rev. 1999 Apr;29(2-3):196-217. [10209232 ]
  2. Yamakura T, Bertaccini E, Trudell JR, Harris RA: Anesthetics and ion channels: molecular models and sites of action. Annu Rev Pharmacol Toxicol. 2001;41:23-51. [11264449 ]