You are using an unsupported browser. Please upgrade your browser to a newer version to get the best experience on Human Metabolome Database.
Record Information
Creation Date2012-09-06 21:02:37 UTC
Update Date2016-02-11 01:34:40 UTC
Secondary Accession NumbersNone
Metabolite Identification
Common NameGlutamyl-Cysteine
DescriptionGlutamyl-Cysteine is a dipeptide composed of glutamate and cysteine. It is an incomplete breakdown product of protein digestion or protein catabolism. Some dipeptides are known to have physiological or cell-signaling effects although most are simply short-lived intermediates on their way to specific amino acid degradation pathways following further proteolysis. This dipeptide has not yet been identified in human tissues or biofluids and so it is classified as an 'Expected' metabolite.
e-C DipeptideHMDB
EC dipeptideHMDB
Glutamate cysteine dipeptideHMDB
Glutamate-cysteine dipeptideHMDB
Chemical FormulaC8H13N2O5S
Average Molecular Weight249.264
Monoisotopic Molecular Weight249.054517226
IUPAC Name4-amino-4-[(1-carboxy-2-sulfanylethyl)carbamoyl]butanoate
Traditional Name4-amino-4-[(1-carboxy-2-sulfanylethyl)carbamoyl]butanoate
CAS Registry NumberNot Available
InChI Identifier
Chemical Taxonomy
DescriptionThis compound belongs to the class of organic compounds known as peptides. These are compounds containing an amide derived from two or more amino carboxylic acid molecules (the same or different) by formation of a covalent bond from the carbonyl carbon of one to the nitrogen atom of another.
KingdomOrganic compounds
Super ClassOrganic acids and derivatives
ClassCarboxylic acids and derivatives
Sub ClassAmino acids, peptides, and analogues
Direct ParentPeptides
Alternative Parents
  • Alpha peptide
  • N-acyl-aliphatic-alpha amino acid
  • N-acyl-alpha amino acid or derivatives
  • N-acyl-alpha-amino acid
  • Alpha-amino acid amide
  • Alpha-amino acid or derivatives
  • N-substituted-alpha-amino acid
  • Amino fatty acid
  • Fatty acyl
  • Fatty acid
  • N-acyl-amine
  • Fatty amide
  • Dicarboxylic acid or derivatives
  • Secondary carboxylic acid amide
  • Carboxylic acid salt
  • Carboxamide group
  • Carboxylic acid
  • Carboxylic acid amide
  • Alkylthiol
  • Hydrocarbon derivative
  • Primary amine
  • Organosulfur compound
  • Organooxygen compound
  • Organonitrogen compound
  • Primary aliphatic amine
  • Carbonyl group
  • Amine
  • Organic anion
  • Aliphatic acyclic compound
Molecular FrameworkAliphatic acyclic compounds
External DescriptorsNot Available
StatusDetected and Quantified
  • Endogenous
BiofunctionNot Available
ApplicationNot Available
Cellular locationsNot Available
Physical Properties
Experimental Properties
Melting PointNot AvailableNot Available
Boiling PointNot AvailableNot Available
Water SolubilityNot AvailableNot Available
Predicted Properties
Water Solubility6.29 mg/mLALOGPS
pKa (Strongest Acidic)3.24ChemAxon
pKa (Strongest Basic)8.44ChemAxon
Physiological Charge-1ChemAxon
Hydrogen Acceptor Count6ChemAxon
Hydrogen Donor Count4ChemAxon
Polar Surface Area132.55 Å2ChemAxon
Rotatable Bond Count7ChemAxon
Refractivity67.15 m3·mol-1ChemAxon
Polarizability23.53 Å3ChemAxon
Number of Rings0ChemAxon
Rule of FiveYesChemAxon
Ghose FilterYesChemAxon
Veber's RuleYesChemAxon
MDDR-like RuleYesChemAxon
SpectraNot Available
Biological Properties
Cellular LocationsNot Available
Biofluid Locations
  • Saliva
Tissue LocationNot Available
PathwaysNot Available
Normal Concentrations
SalivaDetected and Quantified24.03 +/- 2.60 uMAdult (>18 years old)BothNormal
    • Zerihun T. Dame, ...
Abnormal Concentrations
Not Available
Associated Disorders and Diseases
Disease ReferencesNone
Associated OMIM IDsNone
DrugBank IDNot Available
DrugBank Metabolite IDNot Available
Phenol Explorer Compound IDNot Available
Phenol Explorer Metabolite IDNot Available
FoodDB IDNot Available
KNApSAcK IDNot Available
Chemspider IDNot Available
KEGG Compound IDNot Available
BioCyc IDNot Available
BiGG IDNot Available
Wikipedia LinkNot Available
NuGOwiki LinkHMDB28816
Metagene LinkHMDB28816
METLIN IDNot Available
PubChem CompoundNot Available
PDB IDNot Available
ChEBI IDNot Available
Synthesis ReferenceNot Available
Material Safety Data Sheet (MSDS)Not Available
General References
  1. Zinellu A, Sotgia S, Usai MF, Chessa R, Deiana L, Carru C: Thiol redox status evaluation in red blood cells by capillary electrophoresis-laser induced fluorescence detection. Electrophoresis. 2005 May;26(10):1963-8. [15812837 ]
  2. Wunschmann J, Krajewski M, Letzel T, Huber EM, Ehrmann A, Grill E, Lendzian KJ: Dissection of glutathione conjugate turnover in yeast. Phytochemistry. 2010 Jan;71(1):54-61. doi: 10.1016/j.phytochem.2009.09.034. Epub 2009 Nov 10. [19897216 ]
  3. Murata M, Bansho Y, Inoue S, Ito K, Ohnishi S, Midorikawa K, Kawanishi S: Requirement of glutathione and cysteine in guanine-specific oxidation of DNA by carcinogenic potassium bromate. Chem Res Toxicol. 2001 Jun;14(6):678-85. [11409938 ]
  4. Vande Weghe JG, Ow DW: Accumulation of metal-binding peptides in fission yeast requires hmt2+. Mol Microbiol. 2001 Oct;42(1):29-36. [11679064 ]
  5. Zhu YL, Pilon-Smits EA, Tarun AS, Weber SU, Jouanin L, Terry N: Cadmium tolerance and accumulation in Indian mustard is enhanced by overexpressing gamma-glutamylcysteine synthetase. Plant Physiol. 1999 Dec;121(4):1169-78. [10594104 ]
  6. Meuwly P, Thibault P, Schwan AL, Rauser WE: Three families of thiol peptides are induced by cadmium in maize. Plant J. 1995 Mar;7(3):391-400. [7757112 ]
  7. Yen TY, Villa JA, DeWitt JG: Analysis of phytochelatin-cadmium complexes from plant tissue culture using nano-electrospray ionization tandem mass spectrometry and capillary liquid chromatography/electrospray ionization tandem mass spectrometry. J Mass Spectrom. 1999 Sep;34(9):930-41. [10491589 ]
  8. Noble DR, Williams DL: Structure-reactivity studies of the Cu(2+)-catalyzed decomposition of four S-nitrosothiols based around the S-Nitrosocysteine/S-nitrosoglutathione structures. Nitric Oxide. 2000 Aug;4(4):392-8. [10944424 ]
  9. Brautigam A, Schaumloffel D, Krauss GJ, Wesenberg D: Analytical approach for characterization of cadmium-induced thiol peptides--a case study using Chlamydomonas reinhardtii. Anal Bioanal Chem. 2009 Nov;395(6):1737-47. doi: 10.1007/s00216-009-2921-7. Epub 2009 Jul 10. [19590857 ]
  10. Wang W, Clarkson TW, Ballatori N: gamma-Glutamyl transpeptidase and l-cysteine regulate methylmercury uptake by HepG2 cells, a human hepatoma cell line. Toxicol Appl Pharmacol. 2000 Oct 1;168(1):72-8. [11000102 ]
  11. Kataoka H, Takagi K, Makita M: Determination of glutathione and related aminothiols by gas chromatography with flame photometric detection. Biomed Chromatogr. 1995 Mar-Apr;9(2):85-9. [7795391 ]
  12. Sherrill C, Fahey RC: Import and metabolism of glutathione by Streptococcus mutans. J Bacteriol. 1998 Mar;180(6):1454-9. [9515913 ]
  13. Suto RK, Brasch NE, Anderson OP, Finke RG: Synthesis, characterization, solution stability, and X-ray crystal structure of the thiolatocobalamin gamma-glutamylcysteinylcobalamin, a dipeptide analogue of glutathionylcobalamin: insights into the enhanced Co-S bond stability of the natural product glutathionylcobalamin. Inorg Chem. 2001 Jun 4;40(12):2686-92. [11375680 ]
  14. Chen WJ, Graminski GF, Armstrong RN: Dissection of the catalytic mechanism of isozyme 4-4 of glutathione S-transferase with alternative substrates. Biochemistry. 1988 Jan 26;27(2):647-54. [3349053 ]
  15. Blum R, Meyer KC, Wunschmann J, Lendzian KJ, Grill E: Cytosolic action of phytochelatin synthase. Plant Physiol. 2010 May;153(1):159-69. doi: 10.1104/pp.109.149922. Epub 2010 Mar 19. [20304971 ]
  16. Jez JM, Cahoon RE, Chen S: Arabidopsis thaliana glutamate-cysteine ligase: functional properties, kinetic mechanism, and regulation of activity. J Biol Chem. 2004 Aug 6;279(32):33463-70. Epub 2004 Jun 4. [15180996 ]