Hmdb loader
Survey
Identification
HMDB Protein ID HMDBP13951
Secondary Accession Numbers None
Name Apoptosis-associated speck-like protein containing a CARD
Synonyms
  1. hASC
  2. Caspase recruitment domain-containing protein 5
  3. PYD and CARD domain-containing protein
  4. Target of methylation-induced silencing 1
Gene Name PYCARD
Protein Type Unknown
Biological Properties
General Function Not Available
Specific Function Functions as key mediator in apoptosis and inflammation. Promotes caspase-mediated apoptosis involving predominantly caspase-8 and also caspase-9 in a probable cell type-specific manner. Involved in activation of the mitochondrial apoptotic pathway, promotes caspase-8-dependent proteolytic maturation of BID independently of FADD in certain cell types and also mediates mitochondrial translocation of BAX and activates BAX-dependent apoptosis coupled to activation of caspase-9, -2 and -3. Involved in macrophage pyroptosis, a caspase-1-dependent inflammatory form of cell death and is the major constituent of the ASC pyroptosome which forms upon potassium depletion and rapidly recruits and activates caspase-1. In innate immune response believed to act as an integral adapter in the assembly of the inflammasome which activates caspase-1 leading to processing and secretion of proinflammatory cytokines. The function as activating adapter in different types of inflammasomes is mediated by the pyrin and CARD domains and their homotypic interactions. Required for recruitment of caspase-1 to inflammasomes containing certain pattern recognition receptors, such as NLRP2, NLRP3, AIM2 and probably IFI16. In the NLRP1 and NLRC4 inflammasomes seems not be required but facilitates the processing of procaspase-1. In cooperation with NOD2 involved in an inflammasome activated by bacterial muramyl dipeptide leading to caspase-1 activation. May be involved in DDX58-triggered proinflammatory responses and inflammasome activation. Isoform 2 may have a regulating effect on the function as inflammasome adapter. Isoform 3 seems to inhibit inflammasome-mediated maturation of interleukin-1 beta. In collaboration with AIM2 which detects cytosolic double-stranded DNA may also be involved in a caspase-1-independent cell death that involves caspase-8. In adaptive immunity may be involved in maturation of dendritic cells to stimulate T-cell immunity and in cytoskeletal rearrangements coupled to chemotaxis and antigen uptake may be involved in post-transcriptional regulation of the guanine nucleotide exchange factor DOCK2; the latter function is proposed to involve the nuclear form. Also involved in transcriptional activation of cytokines and chemokines independent of the inflammasome; this function may involve AP-1, NF-kappa-B, MAPK and caspase-8 signaling pathways. For regulation of NF-kappa-B activating and inhibiting functions have been reported. Modulates NF-kappa-B induction at the level of the IKK complex by inhibiting kinase activity of CHUK and IKBK. Proposed to compete with RIPK2 for association with CASP1 thereby down-regulating CASP1-mediated RIPK2-dependent NF-kappa-B activation and activating interleukin-1 beta processing. Modulates host resistance to DNA virus infection, probably by inducing the cleavage of and inactivating CGAS in presence of cytoplasmic double-stranded DNA (PubMed:28314590).
Pathways
  • C-type lectin receptor signaling pathway
  • Cytosolic DNA-sensing pathway
  • Influenza A
  • Legionellosis
  • Lipid and atherosclerosis
  • Necroptosis
  • NOD-like receptor signaling pathway
  • Pathogenic Escherichia coli infection
  • Pertussis
  • Salmonella infection
  • Shigellosis
  • Yersinia infection
Reactions Not Available
GO Classification
Biological Process
negative regulation of cytokine production involved in inflammatory response
signal transduction
positive regulation of chemokine production
regulation of inflammatory response
positive regulation of apoptotic process
neutrophil degranulation
positive regulation of interleukin-10 production
positive regulation of interleukin-8 production
activation of cysteine-type endopeptidase activity involved in apoptotic process
myeloid dendritic cell activation involved in immune response
apoptotic process
activation of cysteine-type endopeptidase activity
macropinocytosis
negative regulation of interferon-beta production
positive regulation of cysteine-type endopeptidase activity
positive regulation of T cell activation
positive regulation of T cell migration
purinergic nucleotide receptor signaling pathway
regulation of intrinsic apoptotic signaling pathway
myeloid dendritic cell activation
positive regulation of release of cytochrome c from mitochondria
positive regulation of extrinsic apoptotic signaling pathway
negative regulation of I-kappaB kinase/NF-kappaB cascade
inflammatory response
regulation of tumor necrosis factor-mediated signaling pathway
activation of innate immune response
regulation of autophagy
cellular response to tumor necrosis factor
intrinsic apoptotic signaling pathway in response to DNA damage by p53 class mediator
positive regulation of phagocytosis
positive regulation of cysteine-type endopeptidase activity involved in apoptotic process
cellular response to lipopolysaccharide
cellular response to interleukin-1
positive regulation of ERK1 and ERK2 cascade
regulation of protein stability
positive regulation of sequence-specific DNA binding transcription factor activity
positive regulation of antigen processing and presentation of peptide antigen via MHC class II
defense response to virus
innate immune response
negative regulation of NF-kappaB transcription factor activity
intrinsic apoptotic signaling pathway by p53 class mediator
protein homooligomerization
positive regulation of defense response to virus by host
positive regulation of interferon-gamma production
negative regulation of protein serine/threonine kinase activity
tumor necrosis factor-mediated signaling pathway
positive regulation of tumor necrosis factor production
regulation of GTPase activity
positive regulation of JNK cascade
defense response to Gram-negative bacterium
positive regulation of actin filament polymerization
positive regulation of interleukin-1 beta production
positive regulation of interleukin-6 production
positive regulation of NF-kappaB transcription factor activity
positive regulation of activated T cell proliferation
positive regulation of adaptive immune response
Cellular Component
cytosol
protein-containing complex
cytoplasm
endoplasmic reticulum
IkappaB kinase complex
mitochondrion
NLRP1 inflammasome complex
nucleolus
nucleus
nucleoplasm
AIM2 inflammasome complex
NLRP3 inflammasome complex
extracellular region
azurophil granule lumen
neuronal cell body
secretory granule lumen
Golgi membrane
Molecular Function
protease binding
BMP receptor binding
cysteine-type endopeptidase activity involved in apoptotic process
interleukin-6 receptor binding
myosin I binding
Pyrin domain binding
tropomyosin binding
ion channel binding
protein homodimerization activity
enzyme binding
cysteine-type endopeptidase activator activity involved in apoptotic process
identical protein binding
protein dimerization activity
Cellular Location Not Available
Gene Properties
Chromosome Location Not Available
Locus Not Available
SNPs Not Available
Gene Sequence Not Available
Protein Properties
Number of Residues 195
Molecular Weight 21626.57
Theoretical pI 6.346
Pfam Domain Function
Signals Not Available
Transmembrane Regions Not Available
Protein Sequence Not Available
GenBank ID Protein Not Available
UniProtKB/Swiss-Prot ID Q9ULZ3
UniProtKB/Swiss-Prot Entry Name ASC_HUMAN
PDB IDs
GenBank Gene ID Not Available
GeneCard ID Not Available
GenAtlas ID Not Available
HGNC ID Not Available
References
General References
  1. Ota T, Suzuki Y, Nishikawa T, Otsuki T, Sugiyama T, Irie R, Wakamatsu A, Hayashi K, Sato H, Nagai K, Kimura K, Makita H, Sekine M, Obayashi M, Nishi T, Shibahara T, Tanaka T, Ishii S, Yamamoto J, Saito K, Kawai Y, Isono Y, Nakamura Y, Nagahari K, Murakami K, Yasuda T, Iwayanagi T, Wagatsuma M, Shiratori A, Sudo H, Hosoiri T, Kaku Y, Kodaira H, Kondo H, Sugawara M, Takahashi M, Kanda K, Yokoi T, Furuya T, Kikkawa E, Omura Y, Abe K, Kamihara K, Katsuta N, Sato K, Tanikawa M, Yamazaki M, Ninomiya K, Ishibashi T, Yamashita H, Murakawa K, Fujimori K, Tanai H, Kimata M, Watanabe M, Hiraoka S, Chiba Y, Ishida S, Ono Y, Takiguchi S, Watanabe S, Yosida M, Hotuta T, Kusano J, Kanehori K, Takahashi-Fujii A, Hara H, Tanase TO, Nomura Y, Togiya S, Komai F, Hara R, Takeuchi K, Arita M, Imose N, Musashino K, Yuuki H, Oshima A, Sasaki N, Aotsuka S, Yoshikawa Y, Matsunawa H, Ichihara T, Shiohata N, Sano S, Moriya S, Momiyama H, Satoh N, Takami S, Terashima Y, Suzuki O, Nakagawa S, Senoh A, Mizoguchi H, Goto Y, Shimizu F, Wakebe H, Hishigaki H, Watanabe T, Sugiyama A, Takemoto M, Kawakami B, Yamazaki M, Watanabe K, Kumagai A, Itakura S, Fukuzumi Y, Fujimori Y, Komiyama M, Tashiro H, Tanigami A, Fujiwara T, Ono T, Yamada K, Fujii Y, Ozaki K, Hirao M, Ohmori Y, Kawabata A, Hikiji T, Kobatake N, Inagaki H, Ikema Y, Okamoto S, Okitani R, Kawakami T, Noguchi S, Itoh T, Shigeta K, Senba T, Matsumura K, Nakajima Y, Mizuno T, Morinaga M, Sasaki M, Togashi T, Oyama M, Hata H, Watanabe M, Komatsu T, Mizushima-Sugano J, Satoh T, Shirai Y, Takahashi Y, Nakagawa K, Okumura K, Nagase T, Nomura N, Kikuchi H, Masuho Y, Yamashita R, Nakai K, Yada T, Nakamura Y, Ohara O, Isogai T, Sugano S: Complete sequencing and characterization of 21,243 full-length human cDNAs. Nat Genet. 2004 Jan;36(1):40-5. Epub 2003 Dec 21. [PubMed:14702039 ]
  2. Gerhard DS, Wagner L, Feingold EA, Shenmen CM, Grouse LH, Schuler G, Klein SL, Old S, Rasooly R, Good P, Guyer M, Peck AM, Derge JG, Lipman D, Collins FS, Jang W, Sherry S, Feolo M, Misquitta L, Lee E, Rotmistrovsky K, Greenhut SF, Schaefer CF, Buetow K, Bonner TI, Haussler D, Kent J, Kiekhaus M, Furey T, Brent M, Prange C, Schreiber K, Shapiro N, Bhat NK, Hopkins RF, Hsie F, Driscoll T, Soares MB, Casavant TL, Scheetz TE, Brown-stein MJ, Usdin TB, Toshiyuki S, Carninci P, Piao Y, Dudekula DB, Ko MS, Kawakami K, Suzuki Y, Sugano S, Gruber CE, Smith MR, Simmons B, Moore T, Waterman R, Johnson SL, Ruan Y, Wei CL, Mathavan S, Gunaratne PH, Wu J, Garcia AM, Hulyk SW, Fuh E, Yuan Y, Sneed A, Kowis C, Hodgson A, Muzny DM, McPherson J, Gibbs RA, Fahey J, Helton E, Ketteman M, Madan A, Rodrigues S, Sanchez A, Whiting M, Madari A, Young AC, Wetherby KD, Granite SJ, Kwong PN, Brinkley CP, Pearson RL, Bouffard GG, Blakesly RW, Green ED, Dickson MC, Rodriguez AC, Grimwood J, Schmutz J, Myers RM, Butterfield YS, Griffith M, Griffith OL, Krzywinski MI, Liao N, Morin R, Palmquist D, Petrescu AS, Skalska U, Smailus DE, Stott JM, Schnerch A, Schein JE, Jones SJ, Holt RA, Baross A, Marra MA, Clifton S, Makowski KA, Bosak S, Malek J: The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC). Genome Res. 2004 Oct;14(10B):2121-7. [PubMed:15489334 ]
  3. Bruey JM, Bruey-Sedano N, Newman R, Chandler S, Stehlik C, Reed JC: PAN1/NALP2/PYPAF2, an inducible inflammatory mediator that regulates NF-kappaB and caspase-1 activation in macrophages. J Biol Chem. 2004 Dec 10;279(50):51897-907. Epub 2004 Sep 28. [PubMed:15456791 ]
  4. Agostini L, Martinon F, Burns K, McDermott MF, Hawkins PN, Tschopp J: NALP3 forms an IL-1beta-processing inflammasome with increased activity in Muckle-Wells autoinflammatory disorder. Immunity. 2004 Mar;20(3):319-25. [PubMed:15030775 ]
  5. Burkard TR, Planyavsky M, Kaupe I, Breitwieser FP, Burckstummer T, Bennett KL, Superti-Furga G, Colinge J: Initial characterization of the human central proteome. BMC Syst Biol. 2011 Jan 26;5:17. doi: 10.1186/1752-0509-5-17. [PubMed:21269460 ]
  6. Bian Y, Song C, Cheng K, Dong M, Wang F, Huang J, Sun D, Wang L, Ye M, Zou H: An enzyme assisted RP-RPLC approach for in-depth analysis of human liver phosphoproteome. J Proteomics. 2014 Jan 16;96:253-62. doi: 10.1016/j.jprot.2013.11.014. Epub 2013 Nov 22. [PubMed:24275569 ]
  7. Vaca Jacome AS, Rabilloud T, Schaeffer-Reiss C, Rompais M, Ayoub D, Lane L, Bairoch A, Van Dorsselaer A, Carapito C: N-terminome analysis of the human mitochondrial proteome. Proteomics. 2015 Jul;15(14):2519-24. doi: 10.1002/pmic.201400617. Epub 2015 Jun 8. [PubMed:25944712 ]
  8. Masumoto J, Taniguchi S, Ayukawa K, Sarvotham H, Kishino T, Niikawa N, Hidaka E, Katsuyama T, Higuchi T, Sagara J: ASC, a novel 22-kDa protein, aggregates during apoptosis of human promyelocytic leukemia HL-60 cells. J Biol Chem. 1999 Nov 26;274(48):33835-8. doi: 10.1074/jbc.274.48.33835. [PubMed:10567338 ]
  9. Conway KE, McConnell BB, Bowring CE, Donald CD, Warren ST, Vertino PM: TMS1, a novel proapoptotic caspase recruitment domain protein, is a target of methylation-induced gene silencing in human breast cancers. Cancer Res. 2000 Nov 15;60(22):6236-42. [PubMed:11103776 ]
  10. Matsushita K, Takeoka M, Sagara J, Itano N, Kurose Y, Nakamura A, Taniguchi S: A splice variant of ASC regulates IL-1beta release and aggregates differently from intact ASC. Mediators Inflamm. 2009;2009:287387. doi: 10.1155/2009/287387. Epub 2009 Sep 15. [PubMed:19759850 ]
  11. McConnell BB, Vertino PM: Activation of a caspase-9-mediated apoptotic pathway by subcellular redistribution of the novel caspase recruitment domain protein TMS1. Cancer Res. 2000 Nov 15;60(22):6243-7. [PubMed:11103777 ]
  12. Geddes BJ, Wang L, Huang WJ, Lavellee M, Manji GA, Brown M, Jurman M, Cao J, Morgenstern J, Merriam S, Glucksmann MA, DiStefano PS, Bertin J: Human CARD12 is a novel CED4/Apaf-1 family member that induces apoptosis. Biochem Biophys Res Commun. 2001 Jun 1;284(1):77-82. doi: 10.1006/bbrc.2001.4928. [PubMed:11374873 ]
  13. Richards N, Schaner P, Diaz A, Stuckey J, Shelden E, Wadhwa A, Gumucio DL: Interaction between pyrin and the apoptotic speck protein (ASC) modulates ASC-induced apoptosis. J Biol Chem. 2001 Oct 19;276(42):39320-9. doi: 10.1074/jbc.M104730200. Epub 2001 Aug 9. [PubMed:11498534 ]
  14. Manji GA, Wang L, Geddes BJ, Brown M, Merriam S, Al-Garawi A, Mak S, Lora JM, Briskin M, Jurman M, Cao J, DiStefano PS, Bertin J: PYPAF1, a PYRIN-containing Apaf1-like protein that assembles with ASC and regulates activation of NF-kappa B. J Biol Chem. 2002 Mar 29;277(13):11570-5. doi: 10.1074/jbc.M112208200. Epub 2002 Jan 10. [PubMed:11786556 ]
  15. Srinivasula SM, Poyet JL, Razmara M, Datta P, Zhang Z, Alnemri ES: The PYRIN-CARD protein ASC is an activating adaptor for caspase-1. J Biol Chem. 2002 Jun 14;277(24):21119-22. doi: 10.1074/jbc.C200179200. Epub 2002 Apr 19. [PubMed:11967258 ]
  16. Stehlik C, Fiorentino L, Dorfleutner A, Bruey JM, Ariza EM, Sagara J, Reed JC: The PAAD/PYRIN-family protein ASC is a dual regulator of a conserved step in nuclear factor kappaB activation pathways. J Exp Med. 2002 Dec 16;196(12):1605-15. doi: 10.1084/jem.20021552. [PubMed:12486103 ]
  17. Masumoto J, Dowds TA, Schaner P, Chen FF, Ogura Y, Li M, Zhu L, Katsuyama T, Sagara J, Taniguchi S, Gumucio DL, Nunez G, Inohara N: ASC is an activating adaptor for NF-kappa B and caspase-8-dependent apoptosis. Biochem Biophys Res Commun. 2003 Mar 28;303(1):69-73. doi: 10.1016/s0006-291x(03)00309-7. [PubMed:12646168 ]
  18. Stehlik C, Krajewska M, Welsh K, Krajewski S, Godzik A, Reed JC: The PAAD/PYRIN-only protein POP1/ASC2 is a modulator of ASC-mediated nuclear-factor-kappa B and pro-caspase-1 regulation. Biochem J. 2003 Jul 1;373(Pt 1):101-13. doi: 10.1042/BJ20030304. [PubMed:12656673 ]
  19. Stehlik C, Lee SH, Dorfleutner A, Stassinopoulos A, Sagara J, Reed JC: Apoptosis-associated speck-like protein containing a caspase recruitment domain is a regulator of procaspase-1 activation. J Immunol. 2003 Dec 1;171(11):6154-63. doi: 10.4049/jimmunol.171.11.6154. [PubMed:14634131 ]
  20. Wang Y, Hasegawa M, Imamura R, Kinoshita T, Kondo C, Konaka K, Suda T: PYNOD, a novel Apaf-1/CED4-like protein is an inhibitor of ASC and caspase-1. Int Immunol. 2004 Jun;16(6):777-86. doi: 10.1093/intimm/dxh081. Epub 2004 Apr 19. [PubMed:15096476 ]
  21. Dowds TA, Masumoto J, Zhu L, Inohara N, Nunez G: Cryopyrin-induced interleukin 1beta secretion in monocytic cells: enhanced activity of disease-associated mutants and requirement for ASC. J Biol Chem. 2004 May 21;279(21):21924-8. doi: 10.1074/jbc.M401178200. Epub 2004 Mar 12. [PubMed:15020601 ]
  22. Ohtsuka T, Ryu H, Minamishima YA, Macip S, Sagara J, Nakayama KI, Aaronson SA, Lee SW: ASC is a Bax adaptor and regulates the p53-Bax mitochondrial apoptosis pathway. Nat Cell Biol. 2004 Feb;6(2):121-8. doi: 10.1038/ncb1087. Epub 2004 Jan 18. [PubMed:14730312 ]
  23. Moriya M, Taniguchi S, Wu P, Liepinsh E, Otting G, Sagara J: Role of charged and hydrophobic residues in the oligomerization of the PYRIN domain of ASC. Biochemistry. 2005 Jan 18;44(2):575-83. doi: 10.1021/bi048374i. [PubMed:15641782 ]
  24. Yu JW, Wu J, Zhang Z, Datta P, Ibrahimi I, Taniguchi S, Sagara J, Fernandes-Alnemri T, Alnemri ES: Cryopyrin and pyrin activate caspase-1, but not NF-kappaB, via ASC oligomerization. Cell Death Differ. 2006 Feb;13(2):236-49. doi: 10.1038/sj.cdd.4401734. [PubMed:16037825 ]
  25. Sarkar A, Duncan M, Hart J, Hertlein E, Guttridge DC, Wewers MD: ASC directs NF-kappaB activation by regulating receptor interacting protein-2 (RIP2) caspase-1 interactions. J Immunol. 2006 Apr 15;176(8):4979-86. doi: 10.4049/jimmunol.176.8.4979. [PubMed:16585594 ]
  26. Taxman DJ, Zhang J, Champagne C, Bergstralh DT, Iocca HA, Lich JD, Ting JP: Cutting edge: ASC mediates the induction of multiple cytokines by Porphyromonas gingivalis via caspase-1-dependent and -independent pathways. J Immunol. 2006 Oct 1;177(7):4252-6. doi: 10.4049/jimmunol.177.7.4252. [PubMed:16982856 ]
  27. Faustin B, Lartigue L, Bruey JM, Luciano F, Sergienko E, Bailly-Maitre B, Volkmann N, Hanein D, Rouiller I, Reed JC: Reconstituted NALP1 inflammasome reveals two-step mechanism of caspase-1 activation. Mol Cell. 2007 Mar 9;25(5):713-24. doi: 10.1016/j.molcel.2007.01.032. [PubMed:17349957 ]
  28. Hasegawa M, Kawase K, Inohara N, Imamura R, Yeh WC, Kinoshita T, Suda T: Mechanism of ASC-mediated apoptosis: bid-dependent apoptosis in type II cells. Oncogene. 2007 Mar 15;26(12):1748-56. doi: 10.1038/sj.onc.1209965. Epub 2006 Sep 11. [PubMed:16964285 ]
  29. Dorfleutner A, Bryan NB, Talbott SJ, Funya KN, Rellick SL, Reed JC, Shi X, Rojanasakul Y, Flynn DC, Stehlik C: Cellular pyrin domain-only protein 2 is a candidate regulator of inflammasome activation. Infect Immun. 2007 Mar;75(3):1484-92. doi: 10.1128/IAI.01315-06. Epub 2006 Dec 18. [PubMed:17178784 ]
  30. Bedoya F, Sandler LL, Harton JA: Pyrin-only protein 2 modulates NF-kappaB and disrupts ASC:CLR interactions. J Immunol. 2007 Mar 15;178(6):3837-45. doi: 10.4049/jimmunol.178.6.3837. [PubMed:17339483 ]
  31. Srimathi T, Robbins SL, Dubas RL, Chang H, Cheng H, Roder H, Park YC: Mapping of POP1-binding site on pyrin domain of ASC. J Biol Chem. 2008 May 30;283(22):15390-8. doi: 10.1074/jbc.M801589200. Epub 2008 Mar 24. [PubMed:18362139 ]
  32. Bryan NB, Dorfleutner A, Rojanasakul Y, Stehlik C: Activation of inflammasomes requires intracellular redistribution of the apoptotic speck-like protein containing a caspase recruitment domain. J Immunol. 2009 Mar 1;182(5):3173-82. doi: 10.4049/jimmunol.0802367. [PubMed:19234215 ]
  33. Hasegawa M, Imamura R, Motani K, Nishiuchi T, Matsumoto N, Kinoshita T, Suda T: Mechanism and repertoire of ASC-mediated gene expression. J Immunol. 2009 Jun 15;182(12):7655-62. doi: 10.4049/jimmunol.0800448. [PubMed:19494289 ]
  34. Fernandes-Alnemri T, Yu JW, Datta P, Wu J, Alnemri ES: AIM2 activates the inflammasome and cell death in response to cytoplasmic DNA. Nature. 2009 Mar 26;458(7237):509-13. doi: 10.1038/nature07710. Epub 2009 Jan 21. [PubMed:19158676 ]
  35. Hornung V, Ablasser A, Charrel-Dennis M, Bauernfeind F, Horvath G, Caffrey DR, Latz E, Fitzgerald KA: AIM2 recognizes cytosolic dsDNA and forms a caspase-1-activating inflammasome with ASC. Nature. 2009 Mar 26;458(7237):514-8. doi: 10.1038/nature07725. Epub 2009 Jan 21. [PubMed:19158675 ]
  36. Bryan NB, Dorfleutner A, Kramer SJ, Yun C, Rojanasakul Y, Stehlik C: Differential splicing of the apoptosis-associated speck like protein containing a caspase recruitment domain (ASC) regulates inflammasomes. J Inflamm (Lond). 2010 May 18;7:23. doi: 10.1186/1476-9255-7-23. [PubMed:20482797 ]
  37. Poeck H, Bscheider M, Gross O, Finger K, Roth S, Rebsamen M, Hannesschlager N, Schlee M, Rothenfusser S, Barchet W, Kato H, Akira S, Inoue S, Endres S, Peschel C, Hartmann G, Hornung V, Ruland J: Recognition of RNA virus by RIG-I results in activation of CARD9 and inflammasome signaling for interleukin 1 beta production. Nat Immunol. 2010 Jan;11(1):63-9. doi: 10.1038/ni.1824. Epub 2009 Nov 15. [PubMed:19915568 ]
  38. Kerur N, Veettil MV, Sharma-Walia N, Bottero V, Sadagopan S, Otageri P, Chandran B: IFI16 acts as a nuclear pathogen sensor to induce the inflammasome in response to Kaposi Sarcoma-associated herpesvirus infection. Cell Host Microbe. 2011 May 19;9(5):363-75. doi: 10.1016/j.chom.2011.04.008. [PubMed:21575908 ]
  39. Taxman DJ, Holley-Guthrie EA, Huang MT, Moore CB, Bergstralh DT, Allen IC, Lei Y, Gris D, Ting JP: The NLR adaptor ASC/PYCARD regulates DUSP10, mitogen-activated protein kinase (MAPK), and chemokine induction independent of the inflammasome. J Biol Chem. 2011 Jun 3;286(22):19605-16. doi: 10.1074/jbc.M111.221077. Epub 2011 Apr 12. [PubMed:21487011 ]
  40. Guo X, Dhodapkar KM: Central and overlapping role of Cathepsin B and inflammasome adaptor ASC in antigen presenting function of human dendritic cells. Hum Immunol. 2012 Sep;73(9):871-8. doi: 10.1016/j.humimm.2012.06.008. Epub 2012 Jun 22. [PubMed:22732093 ]
  41. Zhou R, Yazdi AS, Menu P, Tschopp J: A role for mitochondria in NLRP3 inflammasome activation. Nature. 2011 Jan 13;469(7329):221-5. doi: 10.1038/nature09663. Epub 2010 Dec 1. [PubMed:21124315 ]
  42. Jourdan T, Godlewski G, Cinar R, Bertola A, Szanda G, Liu J, Tam J, Han T, Mukhopadhyay B, Skarulis MC, Ju C, Aouadi M, Czech MP, Kunos G: Activation of the Nlrp3 inflammasome in infiltrating macrophages by endocannabinoids mediates beta cell loss in type 2 diabetes. Nat Med. 2013 Sep;19(9):1132-40. doi: 10.1038/nm.3265. Epub 2013 Aug 18. [PubMed:23955712 ]
  43. Triantafilou K, Kar S, Vakakis E, Kotecha S, Triantafilou M: Human respiratory syncytial virus viroporin SH: a viral recognition pathway used by the host to signal inflammasome activation. Thorax. 2013 Jan;68(1):66-75. doi: 10.1136/thoraxjnl-2012-202182. [PubMed:23229815 ]
  44. Wang Y, Ning X, Gao P, Wu S, Sha M, Lv M, Zhou X, Gao J, Fang R, Meng G, Su X, Jiang Z: Inflammasome Activation Triggers Caspase-1-Mediated Cleavage of cGAS to Regulate Responses to DNA Virus Infection. Immunity. 2017 Mar 21;46(3):393-404. doi: 10.1016/j.immuni.2017.02.011. Epub 2017 Mar 14. [PubMed:28314590 ]
  45. Liepinsh E, Barbals R, Dahl E, Sharipo A, Staub E, Otting G: The death-domain fold of the ASC PYRIN domain, presenting a basis for PYRIN/PYRIN recognition. J Mol Biol. 2003 Oct 3;332(5):1155-63. doi: 10.1016/j.jmb.2003.07.007. [PubMed:14499617 ]
  46. de Alba E: Structure and interdomain dynamics of apoptosis-associated speck-like protein containing a CARD (ASC). J Biol Chem. 2009 Nov 20;284(47):32932-41. doi: 10.1074/jbc.M109.024273. Epub 2009 Sep 15. [PubMed:19759015 ]
  47. Gong Q, Robinson K, Xu C, Huynh PT, Chong KHC, Tan EYJ, Zhang J, Boo ZZ, Teo DET, Lay K, Zhang Y, Lim JSY, Goh WI, Wright G, Zhong FL, Reversade B, Wu B: Structural basis for distinct inflammasome complex assembly by human NLRP1 and CARD8. Nat Commun. 2021 Jan 8;12(1):188. doi: 10.1038/s41467-020-20319-5. [PubMed:33420028 ]
  48. Robert Hollingsworth L, David L, Li Y, Griswold AR, Ruan J, Sharif H, Fontana P, Orth-He EL, Fu TM, Bachovchin DA, Wu H: Mechanism of filament formation in UPA-promoted CARD8 and NLRP1 inflammasomes. Nat Commun. 2021 Jan 8;12(1):189. doi: 10.1038/s41467-020-20320-y. [PubMed:33420033 ]