Hmdb loader
Survey
Identification
HMDB Protein ID HMDBP14469
Secondary Accession Numbers None
Name Mothers against decapentaplegic homolog 4
Synonyms
  1. MAD homolog 4
  2. Mothers against DPP homolog 4
  3. Deletion target in pancreatic carcinoma 4
  4. SMAD family member 4
  5. SMAD 4
  6. Smad4
  7. hSMAD4
Gene Name SMAD4
Protein Type Unknown
Biological Properties
General Function Not Available
Specific Function In muscle physiology, plays a central role in the balance between atrophy and hypertrophy. When recruited by MSTN, promotes atrophy response via phosphorylated SMAD2/4. MSTN decrease causes SMAD4 release and subsequent recruitment by the BMP pathway to promote hypertrophy via phosphorylated SMAD1/5/8. Acts synergistically with SMAD1 and YY1 in bone morphogenetic protein (BMP)-mediated cardiac-specific gene expression. Binds to SMAD binding elements (SBEs) (5'-GTCT/AGAC-3') within BMP response element (BMPRE) of cardiac activating regions (By similarity). Common SMAD (co-SMAD) is the coactivator and mediator of signal transduction by TGF-beta (transforming growth factor). Component of the heterotrimeric SMAD2/SMAD3-SMAD4 complex that forms in the nucleus and is required for the TGF-mediated signaling (PubMed:25514493). Promotes binding of the SMAD2/SMAD4/FAST-1 complex to DNA and provides an activation function required for SMAD1 or SMAD2 to stimulate transcription. Component of the multimeric SMAD3/SMAD4/JUN/FOS complex which forms at the AP1 promoter site; required for synergistic transcriptional activity in response to TGF-beta. May act as a tumor suppressor. Positively regulates PDPK1 kinase activity by stimulating its dissociation from the 14-3-3 protein YWHAQ which acts as a negative regulator.
Pathways
  • Adherens junction
  • AGE-RAGE signaling pathway in diabetic complications
  • Apelin signaling pathway
  • Cell cycle
  • Chronic myeloid leukemia
  • Colorectal cancer
  • FoxO signaling pathway
  • Gastric cancer
  • Hepatitis B
  • Hepatocellular carcinoma
  • Hippo signaling pathway
  • Human T-cell leukemia virus 1 infection
  • Pancreatic cancer
  • Signaling pathways regulating pluripotency of stem cells
  • TGF-beta signaling pathway
  • Th17 cell differentiation
  • Wnt signaling pathway
Reactions Not Available
GO Classification
Biological Process
regulation of hair follicle development
spermatogenesis
ventricular septum morphogenesis
protein deubiquitination
somatic stem cell maintenance
cell proliferation
positive regulation of histone H3-K4 methylation
SMAD protein signal transduction
developmental growth
in utero embryonic development
BMP signaling pathway
anatomical structure morphogenesis
positive regulation of pathway-restricted SMAD protein phosphorylation
positive regulation of epithelial to mesenchymal transition
cellular iron ion homeostasis
epithelial to mesenchymal transition involved in endocardial cushion formation
positive regulation of pri-miRNA transcription by RNA polymerase II
regulation of binding
gastrulation with mouth forming second
negative regulation of transcription, DNA-dependent
positive regulation of transcription, DNA-dependent
negative regulation of BMP signaling pathway
endothelial cell activation
axon guidance
negative regulation of transcription from RNA polymerase II promoter
positive regulation of transcription from RNA polymerase II promoter
cell differentiation
branching involved in ureteric bud morphogenesis
neuron fate commitment
negative regulation of cardiac muscle hypertrophy
negative regulation of cell growth
atrioventricular canal development
atrioventricular valve formation
positive regulation of BMP signaling pathway
brainstem development
endocardial cell differentiation
female gonad morphogenesis
formation of anatomical boundary
left ventricular cardiac muscle tissue morphogenesis
mesendoderm development
metanephric mesenchyme morphogenesis
negative regulation of cardiac myofibril assembly
nephrogenic mesenchyme morphogenesis
neural crest cell differentiation
interleukin-6-mediated signaling pathway
outflow tract septum morphogenesis
positive regulation of cell proliferation involved in heart valve morphogenesis
positive regulation of follicle-stimulating hormone secretion
positive regulation of histone H3-K9 acetylation
positive regulation of luteinizing hormone secretion
positive regulation of SMAD protein signal transduction
positive regulation of transforming growth factor beta receptor signaling pathway
regulation of transforming growth factor beta receptor signaling pathway
regulation of transforming growth factor beta2 production
response to transforming growth factor beta
secondary palate development
seminiferous tubule development
SMAD protein complex assembly
transforming growth factor beta receptor signaling pathway
somite rostral/caudal axis specification
uterus development
negative regulation of cell proliferation
negative regulation of ERK1 and ERK2 cascade
negative regulation of cell death
sebaceous gland development
response to hypoxia
single fertilization
embryonic digit morphogenesis
cardiac conduction system development
cellular response to BMP stimulus
positive regulation of transcription from RNA polymerase II promoter involved in cellular response to chemical stimulus
intracellular signal transduction
ovarian follicle development
Cellular Component
cytosol
centrosome
cytoplasm
nucleus
nucleoplasm
chromatin
activin responsive factor complex
heteromeric SMAD protein complex
SMAD protein complex
transcription factor complex
Molecular Function
metal ion binding
collagen binding
R-SMAD binding
DNA-binding transcription activator activity, RNA polymerase II-specific
chromatin binding
protein homodimerization activity
I-SMAD binding
RNA polymerase II transcription factor binding
transcription coactivator binding
DNA-binding transcription factor activity, RNA polymerase II-specific
RNA polymerase II core promoter proximal region sequence-specific DNA binding
identical protein binding
sulfate binding
transcription regulatory region sequence-specific DNA binding
Cellular Location Not Available
Gene Properties
Chromosome Location Not Available
Locus Not Available
SNPs Not Available
Gene Sequence Not Available
Protein Properties
Number of Residues 552
Molecular Weight 60438.705
Theoretical pI 6.984
Pfam Domain Function
Signals Not Available
Transmembrane Regions Not Available
Protein Sequence Not Available
GenBank ID Protein Not Available
UniProtKB/Swiss-Prot ID Q13485
UniProtKB/Swiss-Prot Entry Name SMAD4_HUMAN
PDB IDs
GenBank Gene ID Not Available
GeneCard ID Not Available
GenAtlas ID Not Available
HGNC ID Not Available
References
General References
  1. Ota T, Suzuki Y, Nishikawa T, Otsuki T, Sugiyama T, Irie R, Wakamatsu A, Hayashi K, Sato H, Nagai K, Kimura K, Makita H, Sekine M, Obayashi M, Nishi T, Shibahara T, Tanaka T, Ishii S, Yamamoto J, Saito K, Kawai Y, Isono Y, Nakamura Y, Nagahari K, Murakami K, Yasuda T, Iwayanagi T, Wagatsuma M, Shiratori A, Sudo H, Hosoiri T, Kaku Y, Kodaira H, Kondo H, Sugawara M, Takahashi M, Kanda K, Yokoi T, Furuya T, Kikkawa E, Omura Y, Abe K, Kamihara K, Katsuta N, Sato K, Tanikawa M, Yamazaki M, Ninomiya K, Ishibashi T, Yamashita H, Murakawa K, Fujimori K, Tanai H, Kimata M, Watanabe M, Hiraoka S, Chiba Y, Ishida S, Ono Y, Takiguchi S, Watanabe S, Yosida M, Hotuta T, Kusano J, Kanehori K, Takahashi-Fujii A, Hara H, Tanase TO, Nomura Y, Togiya S, Komai F, Hara R, Takeuchi K, Arita M, Imose N, Musashino K, Yuuki H, Oshima A, Sasaki N, Aotsuka S, Yoshikawa Y, Matsunawa H, Ichihara T, Shiohata N, Sano S, Moriya S, Momiyama H, Satoh N, Takami S, Terashima Y, Suzuki O, Nakagawa S, Senoh A, Mizoguchi H, Goto Y, Shimizu F, Wakebe H, Hishigaki H, Watanabe T, Sugiyama A, Takemoto M, Kawakami B, Yamazaki M, Watanabe K, Kumagai A, Itakura S, Fukuzumi Y, Fujimori Y, Komiyama M, Tashiro H, Tanigami A, Fujiwara T, Ono T, Yamada K, Fujii Y, Ozaki K, Hirao M, Ohmori Y, Kawabata A, Hikiji T, Kobatake N, Inagaki H, Ikema Y, Okamoto S, Okitani R, Kawakami T, Noguchi S, Itoh T, Shigeta K, Senba T, Matsumura K, Nakajima Y, Mizuno T, Morinaga M, Sasaki M, Togashi T, Oyama M, Hata H, Watanabe M, Komatsu T, Mizushima-Sugano J, Satoh T, Shirai Y, Takahashi Y, Nakagawa K, Okumura K, Nagase T, Nomura N, Kikuchi H, Masuho Y, Yamashita R, Nakai K, Yada T, Nakamura Y, Ohara O, Isogai T, Sugano S: Complete sequencing and characterization of 21,243 full-length human cDNAs. Nat Genet. 2004 Jan;36(1):40-5. Epub 2003 Dec 21. [PubMed:14702039 ]
  2. Gerhard DS, Wagner L, Feingold EA, Shenmen CM, Grouse LH, Schuler G, Klein SL, Old S, Rasooly R, Good P, Guyer M, Peck AM, Derge JG, Lipman D, Collins FS, Jang W, Sherry S, Feolo M, Misquitta L, Lee E, Rotmistrovsky K, Greenhut SF, Schaefer CF, Buetow K, Bonner TI, Haussler D, Kent J, Kiekhaus M, Furey T, Brent M, Prange C, Schreiber K, Shapiro N, Bhat NK, Hopkins RF, Hsie F, Driscoll T, Soares MB, Casavant TL, Scheetz TE, Brown-stein MJ, Usdin TB, Toshiyuki S, Carninci P, Piao Y, Dudekula DB, Ko MS, Kawakami K, Suzuki Y, Sugano S, Gruber CE, Smith MR, Simmons B, Moore T, Waterman R, Johnson SL, Ruan Y, Wei CL, Mathavan S, Gunaratne PH, Wu J, Garcia AM, Hulyk SW, Fuh E, Yuan Y, Sneed A, Kowis C, Hodgson A, Muzny DM, McPherson J, Gibbs RA, Fahey J, Helton E, Ketteman M, Madan A, Rodrigues S, Sanchez A, Whiting M, Madari A, Young AC, Wetherby KD, Granite SJ, Kwong PN, Brinkley CP, Pearson RL, Bouffard GG, Blakesly RW, Green ED, Dickson MC, Rodriguez AC, Grimwood J, Schmutz J, Myers RM, Butterfield YS, Griffith M, Griffith OL, Krzywinski MI, Liao N, Morin R, Palmquist D, Petrescu AS, Skalska U, Smailus DE, Stott JM, Schnerch A, Schein JE, Jones SJ, Holt RA, Baross A, Marra MA, Clifton S, Makowski KA, Bosak S, Malek J: The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC). Genome Res. 2004 Oct;14(10B):2121-7. [PubMed:15489334 ]
  3. Choudhary C, Kumar C, Gnad F, Nielsen ML, Rehman M, Walther TC, Olsen JV, Mann M: Lysine acetylation targets protein complexes and co-regulates major cellular functions. Science. 2009 Aug 14;325(5942):834-40. doi: 10.1126/science.1175371. Epub 2009 Jul 16. [PubMed:19608861 ]
  4. Sjoblom T, Jones S, Wood LD, Parsons DW, Lin J, Barber TD, Mandelker D, Leary RJ, Ptak J, Silliman N, Szabo S, Buckhaults P, Farrell C, Meeh P, Markowitz SD, Willis J, Dawson D, Willson JK, Gazdar AF, Hartigan J, Wu L, Liu C, Parmigiani G, Park BH, Bachman KE, Papadopoulos N, Vogelstein B, Kinzler KW, Velculescu VE: The consensus coding sequences of human breast and colorectal cancers. Science. 2006 Oct 13;314(5797):268-74. Epub 2006 Sep 7. [PubMed:16959974 ]
  5. Sayed MG, Ahmed AF, Ringold JR, Anderson ME, Bair JL, Mitros FA, Lynch HT, Tinley ST, Petersen GM, Giardiello FM, Vogelstein B, Howe JR: Germline SMAD4 or BMPR1A mutations and phenotype of juvenile polyposis. Ann Surg Oncol. 2002 Nov;9(9):901-6. [PubMed:12417513 ]
  6. Sun Y, Ding L, Zhang H, Han J, Yang X, Yan J, Zhu Y, Li J, Song H, Ye Q: Potentiation of Smad-mediated transcriptional activation by the RNA-binding protein RBPMS. Nucleic Acids Res. 2006;34(21):6314-26. Epub 2006 Nov 11. [PubMed:17099224 ]
  7. Smith DP, Rayter SI, Niederlander C, Spicer J, Jones CM, Ashworth A: LIP1, a cytoplasmic protein functionally linked to the Peutz-Jeghers syndrome kinase LKB1. Hum Mol Genet. 2001 Dec 1;10(25):2869-77. [PubMed:11741830 ]
  8. Zhang Y, Feng X, We R, Derynck R: Receptor-associated Mad homologues synergize as effectors of the TGF-beta response. Nature. 1996 Sep 12;383(6596):168-72. [PubMed:8774881 ]
  9. Liu F, Pouponnot C, Massague J: Dual role of the Smad4/DPC4 tumor suppressor in TGFbeta-inducible transcriptional complexes. Genes Dev. 1997 Dec 1;11(23):3157-67. [PubMed:9389648 ]
  10. Varelas X, Sakuma R, Samavarchi-Tehrani P, Peerani R, Rao BM, Dembowy J, Yaffe MB, Zandstra PW, Wrana JL: TAZ controls Smad nucleocytoplasmic shuttling and regulates human embryonic stem-cell self-renewal. Nat Cell Biol. 2008 Jul;10(7):837-48. doi: 10.1038/ncb1748. Epub 2008 Jun 22. [PubMed:18568018 ]
  11. Hahn SA, Schutte M, Hoque AT, Moskaluk CA, da Costa LT, Rozenblum E, Weinstein CL, Fischer A, Yeo CJ, Hruban RH, Kern SE: DPC4, a candidate tumor suppressor gene at human chromosome 18q21.1. Science. 1996 Jan 19;271(5247):350-3. [PubMed:8553070 ]
  12. Moskaluk CA, Hruban RH, Schutte M, Lietman AS, Smyrk T, Fusaro L, Fusaro R, Lynch J, Yeo CJ, Jackson CE, Lynch HT, Kern SE: Genomic sequencing of DPC4 in the analysis of familial pancreatic carcinoma. Diagn Mol Pathol. 1997 Apr;6(2):85-90. [PubMed:9098646 ]
  13. de Caestecker MP, Yahata T, Wang D, Parks WT, Huang S, Hill CS, Shioda T, Roberts AB, Lechleider RJ: The Smad4 activation domain (SAD) is a proline-rich, p300-dependent transcriptional activation domain. J Biol Chem. 2000 Jan 21;275(3):2115-22. [PubMed:10636916 ]
  14. Shi Y, Hata A, Lo RS, Massague J, Pavletich NP: A structural basis for mutational inactivation of the tumour suppressor Smad4. Nature. 1997 Jul 3;388(6637):87-93. [PubMed:9214508 ]
  15. Qin B, Lam SS, Lin K: Crystal structure of a transcriptionally active Smad4 fragment. Structure. 1999 Dec 15;7(12):1493-503. [PubMed:10647180 ]
  16. Chacko BM, Qin B, Correia JJ, Lam SS, de Caestecker MP, Lin K: The L3 loop and C-terminal phosphorylation jointly define Smad protein trimerization. Nat Struct Biol. 2001 Mar;8(3):248-53. [PubMed:11224571 ]
  17. Wu K, Yang Y, Wang C, Davoli MA, D'Amico M, Li A, Cveklova K, Kozmik Z, Lisanti MP, Russell RG, Cvekl A, Pestell RG: DACH1 inhibits transforming growth factor-beta signaling through binding Smad4. J Biol Chem. 2003 Dec 19;278(51):51673-84. Epub 2003 Oct 2. [PubMed:14525983 ]
  18. Dupont S, Zacchigna L, Cordenonsi M, Soligo S, Adorno M, Rugge M, Piccolo S: Germ-layer specification and control of cell growth by Ectodermin, a Smad4 ubiquitin ligase. Cell. 2005 Apr 8;121(1):87-99. [PubMed:15820681 ]
  19. Dupont S, Mamidi A, Cordenonsi M, Montagner M, Zacchigna L, Adorno M, Martello G, Stinchfield MJ, Soligo S, Morsut L, Inui M, Moro S, Modena N, Argenton F, Newfeld SJ, Piccolo S: FAM/USP9x, a deubiquitinating enzyme essential for TGFbeta signaling, controls Smad4 monoubiquitination. Cell. 2009 Jan 9;136(1):123-35. doi: 10.1016/j.cell.2008.10.051. [PubMed:19135894 ]
  20. Burkard TR, Planyavsky M, Kaupe I, Breitwieser FP, Burckstummer T, Bennett KL, Superti-Furga G, Colinge J: Initial characterization of the human central proteome. BMC Syst Biol. 2011 Jan 26;5:17. doi: 10.1186/1752-0509-5-17. [PubMed:21269460 ]
  21. Bian Y, Song C, Cheng K, Dong M, Wang F, Huang J, Sun D, Wang L, Ye M, Zou H: An enzyme assisted RP-RPLC approach for in-depth analysis of human liver phosphoproteome. J Proteomics. 2014 Jan 16;96:253-62. doi: 10.1016/j.jprot.2013.11.014. Epub 2013 Nov 22. [PubMed:24275569 ]
  22. Hendriks IA, Lyon D, Young C, Jensen LJ, Vertegaal AC, Nielsen ML: Site-specific mapping of the human SUMO proteome reveals co-modification with phosphorylation. Nat Struct Mol Biol. 2017 Mar;24(3):325-336. doi: 10.1038/nsmb.3366. Epub 2017 Jan 23. [PubMed:28112733 ]
  23. Hendriks IA, D'Souza RC, Yang B, Verlaan-de Vries M, Mann M, Vertegaal AC: Uncovering global SUMOylation signaling networks in a site-specific manner. Nat Struct Mol Biol. 2014 Oct;21(10):927-36. doi: 10.1038/nsmb.2890. Epub 2014 Sep 14. [PubMed:25218447 ]
  24. Xiao Z, Chang JG, Hendriks IA, Sigurethsson JO, Olsen JV, Vertegaal AC: System-wide Analysis of SUMOylation Dynamics in Response to Replication Stress Reveals Novel Small Ubiquitin-like Modified Target Proteins and Acceptor Lysines Relevant for Genome Stability. Mol Cell Proteomics. 2015 May;14(5):1419-34. doi: 10.1074/mcp.O114.044792. Epub 2015 Mar 9. [PubMed:25755297 ]
  25. Jiao K, Zhou Y, Hogan BL: Identification of mZnf8, a mouse Kruppel-like transcriptional repressor, as a novel nuclear interaction partner of Smad1. Mol Cell Biol. 2002 Nov;22(21):7633-44. doi: 10.1128/MCB.22.21.7633-7644.2002. [PubMed:12370310 ]
  26. Kawabata M, Inoue H, Hanyu A, Imamura T, Miyazono K: Smad proteins exist as monomers in vivo and undergo homo- and hetero-oligomerization upon activation by serine/threonine kinase receptors. EMBO J. 1998 Jul 15;17(14):4056-65. doi: 10.1093/emboj/17.14.4056. [PubMed:9670020 ]
  27. Shioda T, Lechleider RJ, Dunwoodie SL, Li H, Yahata T, de Caestecker MP, Fenner MH, Roberts AB, Isselbacher KJ: Transcriptional activating activity of Smad4: roles of SMAD hetero-oligomerization and enhancement by an associating transactivator. Proc Natl Acad Sci U S A. 1998 Aug 18;95(17):9785-90. doi: 10.1073/pnas.95.17.9785. [PubMed:9707553 ]
  28. Hata A, Seoane J, Lagna G, Montalvo E, Hemmati-Brivanlou A, Massague J: OAZ uses distinct DNA- and protein-binding zinc fingers in separate BMP-Smad and Olf signaling pathways. Cell. 2000 Jan 21;100(2):229-40. doi: 10.1016/s0092-8674(00)81561-5. [PubMed:10660046 ]
  29. Felici A, Wurthner JU, Parks WT, Giam LR, Reiss M, Karpova TS, McNally JG, Roberts AB: TLP, a novel modulator of TGF-beta signaling, has opposite effects on Smad2- and Smad3-dependent signaling. EMBO J. 2003 Sep 1;22(17):4465-77. doi: 10.1093/emboj/cdg428. [PubMed:12941698 ]
  30. Chiba S, Takeshita K, Imai Y, Kumano K, Kurokawa M, Masuda S, Shimizu K, Nakamura S, Ruddle FH, Hirai H: Homeoprotein DLX-1 interacts with Smad4 and blocks a signaling pathway from activin A in hematopoietic cells. Proc Natl Acad Sci U S A. 2003 Dec 23;100(26):15577-82. doi: 10.1073/pnas.2536757100. Epub 2003 Dec 11. [PubMed:14671321 ]
  31. Bond HM, Mesuraca M, Carbone E, Bonelli P, Agosti V, Amodio N, De Rosa G, Di Nicola M, Gianni AM, Moore MA, Hata A, Grieco M, Morrone G, Venuta S: Early hematopoietic zinc finger protein (EHZF), the human homolog to mouse Evi3, is highly expressed in primitive human hematopoietic cells. Blood. 2004 Mar 15;103(6):2062-70. doi: 10.1182/blood-2003-07-2388. Epub 2003 Nov 20. [PubMed:14630787 ]
  32. Chen HB, Rud JG, Lin K, Xu L: Nuclear targeting of transforming growth factor-beta-activated Smad complexes. J Biol Chem. 2005 Jun 3;280(22):21329-36. doi: 10.1074/jbc.M500362200. Epub 2005 Mar 30. [PubMed:15799969 ]
  33. Li X, Thyssen G, Beliakoff J, Sun Z: The novel PIAS-like protein hZimp10 enhances Smad transcriptional activity. J Biol Chem. 2006 Aug 18;281(33):23748-56. doi: 10.1074/jbc.M508365200. Epub 2006 Jun 15. [PubMed:16777850 ]
  34. Nasim MT, Ogo T, Ahmed M, Randall R, Chowdhury HM, Snape KM, Bradshaw TY, Southgate L, Lee GJ, Jackson I, Lord GM, Gibbs JS, Wilkins MR, Ohta-Ogo K, Nakamura K, Girerd B, Coulet F, Soubrier F, Humbert M, Morrell NW, Trembath RC, Machado RD: Molecular genetic characterization of SMAD signaling molecules in pulmonary arterial hypertension. Hum Mutat. 2011 Dec;32(12):1385-9. doi: 10.1002/humu.21605. Epub 2011 Oct 11. [PubMed:21898662 ]
  35. Feng Y, Wu H, Xu Y, Zhang Z, Liu T, Lin X, Feng XH: Zinc finger protein 451 is a novel Smad corepressor in transforming growth factor-beta signaling. J Biol Chem. 2014 Jan 24;289(4):2072-83. doi: 10.1074/jbc.M113.526905. Epub 2013 Dec 9. [PubMed:24324267 ]
  36. Chen Q, Lee CE, Denard B, Ye J: Sustained induction of collagen synthesis by TGF-beta requires regulated intramembrane proteolysis of CREB3L1. PLoS One. 2014 Oct 13;9(10):e108528. doi: 10.1371/journal.pone.0108528. eCollection 2014. [PubMed:25310401 ]
  37. Yang Y, Cui J, Xue F, Zhang C, Mei Z, Wang Y, Bi M, Shan D, Meredith A, Li H, Xu ZQ: Pokemon (FBI-1) interacts with Smad4 to repress TGF-beta-induced transcriptional responses. Biochim Biophys Acta. 2015 Mar;1849(3):270-81. doi: 10.1016/j.bbagrm.2014.12.008. Epub 2014 Dec 13. [PubMed:25514493 ]
  38. Braun DA, Sadowski CE, Kohl S, Lovric S, Astrinidis SA, Pabst WL, Gee HY, Ashraf S, Lawson JA, Shril S, Airik M, Tan W, Schapiro D, Rao J, Choi WI, Hermle T, Kemper MJ, Pohl M, Ozaltin F, Konrad M, Bogdanovic R, Buscher R, Helmchen U, Serdaroglu E, Lifton RP, Antonin W, Hildebrandt F: Mutations in nuclear pore genes NUP93, NUP205 and XPO5 cause steroid-resistant nephrotic syndrome. Nat Genet. 2016 Apr;48(4):457-65. doi: 10.1038/ng.3512. Epub 2016 Feb 15. [PubMed:26878725 ]
  39. Chacko BM, Qin BY, Tiwari A, Shi G, Lam S, Hayward LJ, De Caestecker M, Lin K: Structural basis of heteromeric smad protein assembly in TGF-beta signaling. Mol Cell. 2004 Sep 10;15(5):813-23. doi: 10.1016/j.molcel.2004.07.016. [PubMed:15350224 ]
  40. Houlston R, Bevan S, Williams A, Young J, Dunlop M, Rozen P, Eng C, Markie D, Woodford-Richens K, Rodriguez-Bigas MA, Leggett B, Neale K, Phillips R, Sheridan E, Hodgson S, Iwama T, Eccles D, Bodmer W, Tomlinson I: Mutations in DPC4 (SMAD4) cause juvenile polyposis syndrome, but only account for a minority of cases. Hum Mol Genet. 1998 Nov;7(12):1907-12. doi: 10.1093/hmg/7.12.1907. [PubMed:9811934 ]
  41. Gallione CJ, Repetto GM, Legius E, Rustgi AK, Schelley SL, Tejpar S, Mitchell G, Drouin E, Westermann CJ, Marchuk DA: A combined syndrome of juvenile polyposis and hereditary haemorrhagic telangiectasia associated with mutations in MADH4 (SMAD4). Lancet. 2004 Mar 13;363(9412):852-9. doi: 10.1016/S0140-6736(04)15732-2. [PubMed:15031030 ]
  42. Caputo V, Cianetti L, Niceta M, Carta C, Ciolfi A, Bocchinfuso G, Carrani E, Dentici ML, Biamino E, Belligni E, Garavelli L, Boccone L, Melis D, Andria G, Gelb BD, Stella L, Silengo M, Dallapiccola B, Tartaglia M: A restricted spectrum of mutations in the SMAD4 tumor-suppressor gene underlies Myhre syndrome. Am J Hum Genet. 2012 Jan 13;90(1):161-9. doi: 10.1016/j.ajhg.2011.12.011. [PubMed:22243968 ]
  43. Le Goff C, Mahaut C, Abhyankar A, Le Goff W, Serre V, Afenjar A, Destree A, di Rocco M, Heron D, Jacquemont S, Marlin S, Simon M, Tolmie J, Verloes A, Casanova JL, Munnich A, Cormier-Daire V: Mutations at a single codon in Mad homology 2 domain of SMAD4 cause Myhre syndrome. Nat Genet. 2011 Dec 11;44(1):85-8. doi: 10.1038/ng.1016. [PubMed:22158539 ]