Hmdb loader
Survey
Identification
HMDB Protein ID HMDBP14474
Secondary Accession Numbers None
Name Transforming growth factor beta-3 proprotein
Synonyms Not Available
Gene Name TGFB3
Protein Type Unknown
Biological Properties
General Function Not Available
Specific Function Transforming growth factor beta-3 proprotein: Precursor of the Latency-associated peptide (LAP) and Transforming growth factor beta-3 (TGF-beta-3) chains, which constitute the regulatory and active subunit of TGF-beta-3, respectively.Required to maintain the Transforming growth factor beta-3 (TGF-beta-3) chain in a latent state during storage in extracellular matrix (By similarity). Associates non-covalently with TGF-beta-3 and regulates its activation via interaction with 'milieu molecules', such as LTBP1 and LRRC32/GARP, that control activation of TGF-beta-3 (By similarity). Interaction with integrins results in distortion of the Latency-associated peptide chain and subsequent release of the active TGF-beta-3 (By similarity).Transforming growth factor beta-3: Multifunctional protein that regulates embryogenesis and cell differentiation and is required in various processes such as secondary palate development (By similarity). Activation into mature form follows different steps: following cleavage of the proprotein in the Golgi apparatus, Latency-associated peptide (LAP) and Transforming growth factor beta-3 (TGF-beta-3) chains remain non-covalently linked rendering TGF-beta-3 inactive during storage in extracellular matrix (By similarity). At the same time, LAP chain interacts with 'milieu molecules', such as LTBP1 and LRRC32/GARP that control activation of TGF-beta-3 and maintain it in a latent state during storage in extracellular milieus (By similarity). TGF-beta-3 is released from LAP by integrins: integrin-binding results in distortion of the LAP chain and subsequent release of the active TGF-beta-3 (By similarity). Once activated following release of LAP, TGF-beta-3 acts by binding to TGF-beta receptors (TGFBR1 and TGFBR2), which transduce signal (By similarity).
Pathways
  • AGE-RAGE signaling pathway in diabetic complications
  • Amoebiasis
  • Cell cycle
  • Cellular senescence
  • Chagas disease
  • Chronic myeloid leukemia
  • Colorectal cancer
  • Cytokine-cytokine receptor interaction
  • Diabetic cardiomyopathy
  • Dilated cardiomyopathy
  • FoxO signaling pathway
  • Gastric cancer
  • Hepatitis B
  • Hepatocellular carcinoma
  • Hippo signaling pathway
  • Human T-cell leukemia virus 1 infection
  • Hypertrophic cardiomyopathy
  • Inflammatory bowel disease
  • Leishmaniasis
  • Malaria
  • MAPK signaling pathway
  • Pancreatic cancer
  • Renal cell carcinoma
  • Rheumatoid arthritis
  • TGF-beta signaling pathway
  • Toxoplasmosis
  • Tuberculosis
Reactions Not Available
GO Classification
Biological Process
cell-cell junction organization
wound healing
positive regulation of bone mineralization
frontal suture morphogenesis
regulation of cell proliferation
odontogenesis
positive regulation of tight junction disassembly
response to laminar fluid shear stress
female pregnancy
uterine wall breakdown
positive regulation of apoptotic process
platelet degranulation
response to progesterone stimulus
negative regulation of neuron apoptotic process
positive regulation of cell proliferation
mammary gland development
face morphogenesis
SMAD protein signal transduction
positive regulation of protein secretion
in utero embryonic development
BMP signaling pathway
digestive tract development
ossification involved in bone remodeling
positive regulation of pathway-restricted SMAD protein phosphorylation
positive regulation of collagen biosynthetic process
positive regulation of epithelial to mesenchymal transition
negative regulation of vascular associated smooth muscle cell proliferation
salivary gland morphogenesis
positive regulation of transcription, DNA-dependent
embryonic neurocranium morphogenesis
positive regulation of transcription from RNA polymerase II promoter
inner ear development
positive regulation of SMAD protein signal transduction
negative regulation of transforming growth factor beta receptor signaling pathway
aging
secondary palate development
transforming growth factor beta receptor signaling pathway
lung alveolus development
negative regulation of cell proliferation
positive regulation of cell division
detection of hypoxia
negative regulation of macrophage cytokine production
response to hypoxia
positive regulation of filopodium assembly
activation of MAPK activity
positive regulation of stress fiber assembly
response to estrogen stimulus
Cellular Component
cell surface
platelet alpha granule lumen
plasma membrane
nucleus
extracellular region
collagen-containing extracellular matrix
neuronal cell body
extracellular space
T-tubule
intracellular membrane-bounded organelle
Molecular Function
protein-containing complex binding
transforming growth factor beta binding
growth factor activity
type II transforming growth factor beta receptor binding
type III transforming growth factor beta receptor binding
cytokine activity
identical protein binding
type I transforming growth factor beta receptor binding
Cellular Location Not Available
Gene Properties
Chromosome Location Not Available
Locus Not Available
SNPs Not Available
Gene Sequence Not Available
Protein Properties
Number of Residues 412
Molecular Weight 47327.895
Theoretical pI 8.034
Pfam Domain Function
Signals
  • 1-23;
Transmembrane Regions Not Available
Protein Sequence Not Available
GenBank ID Protein Not Available
UniProtKB/Swiss-Prot ID P10600
UniProtKB/Swiss-Prot Entry Name TGFB3_HUMAN
PDB IDs
GenBank Gene ID Not Available
GeneCard ID Not Available
GenAtlas ID Not Available
HGNC ID Not Available
References
General References
  1. Gerhard DS, Wagner L, Feingold EA, Shenmen CM, Grouse LH, Schuler G, Klein SL, Old S, Rasooly R, Good P, Guyer M, Peck AM, Derge JG, Lipman D, Collins FS, Jang W, Sherry S, Feolo M, Misquitta L, Lee E, Rotmistrovsky K, Greenhut SF, Schaefer CF, Buetow K, Bonner TI, Haussler D, Kent J, Kiekhaus M, Furey T, Brent M, Prange C, Schreiber K, Shapiro N, Bhat NK, Hopkins RF, Hsie F, Driscoll T, Soares MB, Casavant TL, Scheetz TE, Brown-stein MJ, Usdin TB, Toshiyuki S, Carninci P, Piao Y, Dudekula DB, Ko MS, Kawakami K, Suzuki Y, Sugano S, Gruber CE, Smith MR, Simmons B, Moore T, Waterman R, Johnson SL, Ruan Y, Wei CL, Mathavan S, Gunaratne PH, Wu J, Garcia AM, Hulyk SW, Fuh E, Yuan Y, Sneed A, Kowis C, Hodgson A, Muzny DM, McPherson J, Gibbs RA, Fahey J, Helton E, Ketteman M, Madan A, Rodrigues S, Sanchez A, Whiting M, Madari A, Young AC, Wetherby KD, Granite SJ, Kwong PN, Brinkley CP, Pearson RL, Bouffard GG, Blakesly RW, Green ED, Dickson MC, Rodriguez AC, Grimwood J, Schmutz J, Myers RM, Butterfield YS, Griffith M, Griffith OL, Krzywinski MI, Liao N, Morin R, Palmquist D, Petrescu AS, Skalska U, Smailus DE, Stott JM, Schnerch A, Schein JE, Jones SJ, Holt RA, Baross A, Marra MA, Clifton S, Makowski KA, Bosak S, Malek J: The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC). Genome Res. 2004 Oct;14(10B):2121-7. [PubMed:15489334 ]
  2. Heilig R, Eckenberg R, Petit JL, Fonknechten N, Da Silva C, Cattolico L, Levy M, Barbe V, de Berardinis V, Ureta-Vidal A, Pelletier E, Vico V, Anthouard V, Rowen L, Madan A, Qin S, Sun H, Du H, Pepin K, Artiguenave F, Robert C, Cruaud C, Bruls T, Jaillon O, Friedlander L, Samson G, Brottier P, Cure S, Segurens B, Aniere F, Samain S, Crespeau H, Abbasi N, Aiach N, Boscus D, Dickhoff R, Dors M, Dubois I, Friedman C, Gouyvenoux M, James R, Madan A, Mairey-Estrada B, Mangenot S, Martins N, Menard M, Oztas S, Ratcliffe A, Shaffer T, Trask B, Vacherie B, Bellemere C, Belser C, Besnard-Gonnet M, Bartol-Mavel D, Boutard M, Briez-Silla S, Combette S, Dufosse-Laurent V, Ferron C, Lechaplais C, Louesse C, Muselet D, Magdelenat G, Pateau E, Petit E, Sirvain-Trukniewicz P, Trybou A, Vega-Czarny N, Bataille E, Bluet E, Bordelais I, Dubois M, Dumont C, Guerin T, Haffray S, Hammadi R, Muanga J, Pellouin V, Robert D, Wunderle E, Gauguet G, Roy A, Sainte-Marthe L, Verdier J, Verdier-Discala C, Hillier L, Fulton L, McPherson J, Matsuda F, Wilson R, Scarpelli C, Gyapay G, Wincker P, Saurin W, Quetier F, Waterston R, Hood L, Weissenbach J: The DNA sequence and analysis of human chromosome 14. Nature. 2003 Feb 6;421(6923):601-7. Epub 2003 Jan 1. [PubMed:12508121 ]
  3. Nakajima M, Kizawa H, Saitoh M, Kou I, Miyazono K, Ikegawa S: Mechanisms for asporin function and regulation in articular cartilage. J Biol Chem. 2007 Nov 2;282(44):32185-92. Epub 2007 Sep 7. [PubMed:17827158 ]
  4. ten Dijke P, Hansen P, Iwata KK, Pieler C, Foulkes JG: Identification of another member of the transforming growth factor type beta gene family. Proc Natl Acad Sci U S A. 1988 Jul;85(13):4715-9. doi: 10.1073/pnas.85.13.4715. [PubMed:3164476 ]
  5. Derynck R, Lindquist PB, Lee A, Wen D, Tamm J, Graycar JL, Rhee L, Mason AJ, Miller DA, Coffey RJ, et al.: A new type of transforming growth factor-beta, TGF-beta 3. EMBO J. 1988 Dec 1;7(12):3737-43. [PubMed:3208746 ]
  6. Arrick BA, Lee AL, Grendell RL, Derynck R: Inhibition of translation of transforming growth factor-beta 3 mRNA by its 5' untranslated region. Mol Cell Biol. 1991 Sep;11(9):4306-13. doi: 10.1128/mcb.11.9.4306-4313.1991. [PubMed:1875922 ]
  7. Beffagna G, Occhi G, Nava A, Vitiello L, Ditadi A, Basso C, Bauce B, Carraro G, Thiene G, Towbin JA, Danieli GA, Rampazzo A: Regulatory mutations in transforming growth factor-beta3 gene cause arrhythmogenic right ventricular cardiomyopathy type 1. Cardiovasc Res. 2005 Feb 1;65(2):366-73. doi: 10.1016/j.cardiores.2004.10.005. [PubMed:15639475 ]
  8. Kusevic D, Kudithipudi S, Jeltsch A: Substrate Specificity of the HEMK2 Protein Glutamine Methyltransferase and Identification of Novel Substrates. J Biol Chem. 2016 Mar 18;291(12):6124-33. doi: 10.1074/jbc.M115.711952. Epub 2016 Jan 21. [PubMed:26797129 ]
  9. Rienhoff HY Jr, Yeo CY, Morissette R, Khrebtukova I, Melnick J, Luo S, Leng N, Kim YJ, Schroth G, Westwick J, Vogel H, McDonnell N, Hall JG, Whitman M: A mutation in TGFB3 associated with a syndrome of low muscle mass, growth retardation, distal arthrogryposis and clinical features overlapping with Marfan and Loeys-Dietz syndrome. Am J Med Genet A. 2013 Aug;161A(8):2040-6. doi: 10.1002/ajmg.a.36056. Epub 2013 Jul 3. [PubMed:23824657 ]