| Record Information |
|---|
| Version | 5.0 |
|---|
| Status | Detected but not Quantified |
|---|
| Creation Date | 2006-08-13 09:35:11 UTC |
|---|
| Update Date | 2023-02-21 17:16:51 UTC |
|---|
| HMDB ID | HMDB0004043 |
|---|
| Secondary Accession Numbers | - HMDB0036086
- HMDB04043
- HMDB36086
|
|---|
| Metabolite Identification |
|---|
| Common Name | alpha-Terpineol |
|---|
| Description | alpha-Terpineol (CAS: 98-55-5) is a naturally occurring monoterpene alcohol that has been isolated from a variety of sources such as cajuput oil, pine oil, and petitgrain oil. There are three isomers of terpineol, alpha-, beta-, and gamma-terpineol, with the last two differing only by the location of the double bond. Terpineol is usually a mixture of these isomers with alpha-terpineol as the major constituent. Terpineol has a pleasant odour similar to lilac and is a common ingredient in perfumes, cosmetics, and flavours. alpha-Terpineol is occasionally found as a volatile component in urine. It is a water-soluble component of Melaleuca alternifolia Cheel, the tea tree oil (TTO). alpha-Terpineol is a likely mediator of the in vitro and in vivo activity of the TTO as an agent that could control C. albicans vaginal infections. Purified alpha-terpineol can suppress pro-inflammatory mediator production by activated human monocytes. alpha-Terpineol is able to impair the growth of human M14 melanoma cells and appear to be more effective on their resistant variants, which express high levels of P-glycoprotein in the plasma membrane, overcoming resistance to caspase-dependent apoptosis exerted by P-glycoprotein-positive tumour cells (PMID:5556886 , 17083732 , 11131302 , 15009716 ). |
|---|
| Structure | CC1=CC[C@@H](CC1)C(C)(C)O InChI=1S/C10H18O/c1-8-4-6-9(7-5-8)10(2,3)11/h4,9,11H,5-7H2,1-3H3/t9-/m0/s1 |
|---|
| Synonyms | | Value | Source |
|---|
| (+)-p-Menth-1-en-8-ol | ChEBI | | (1R)-alpha,alpha,4-Trimethyl-3-cyclohexene-1-methanol | ChEBI | | (R)-alpha,alpha,4-Trimethylcyclohex-3-ene-1-methanol | ChEBI | | (R)-alpha-Terpineol | ChEBI | | (+)-alpha-Terpineol | Kegg | | (1R)-a,a,4-Trimethyl-3-cyclohexene-1-methanol | Generator | | (1R)-Α,α,4-trimethyl-3-cyclohexene-1-methanol | Generator | | (R)-a,a,4-Trimethylcyclohex-3-ene-1-methanol | Generator | | (R)-Α,α,4-trimethylcyclohex-3-ene-1-methanol | Generator | | (R)-a-Terpineol | Generator | | (R)-Α-terpineol | Generator | | (+)-a-Terpineol | Generator | | (+)-Α-terpineol | Generator | | a-Terpineol | Generator | | Α-terpineol | Generator | | (6R)-P-Menth-1-en-8-ol | HMDB | | (R)-(+)-alpha-Terpineol | HMDB | | (R)-2-(4-Methyl-3-cyclohexenyl)isopropanol | HMDB | | (R)-P-Menth-1-en-8-ol | HMDB | | (S)-(-)-P-Menth-1-en-8-ol | HMDB | | 1-alpha-Terpineol | HMDB, MeSH | | 2-(4-Methyl-3-cyclohexen-1-yl)-2-propanol | HMDB | | 2-(4-Methylcyclohex-3-en-1-yl)propan-2-ol | HMDB | | 2-(4-Methylcyclohex-3-enyl)propan-2-ol (alpha-terpineol) | HMDB | | 2-[(1R)-4-Methylcyclohex-3-en-1-yl]propan-2-ol | HMDB | | alpha,alpha,4-Trimethyl-3-cyclohexene-1-methanol | HMDB | | alpha-Terpinenol | HMDB | | alpha-Terpineole | HMDB | | alpha-Terpinol | HMDB | | L-alpha-Terpineol | HMDB | | Lily OF valley | HMDB | | Terpenol | HMDB | | Terpineol | HMDB | | Terpineol schlechthin | HMDB | | DL-alpha-Terpineol | MeSH, HMDB | | alpha-Terpineol, sodium salt | MeSH, HMDB | | P-Menth-1-en-8-ol | MeSH, HMDB | | D-alpha-Terpineol | MeSH, HMDB | | (S)-a-Terpineol | Generator, HMDB | | (S)-Α-terpineol | Generator, HMDB | | alpha-Terpineol | MeSH |
|
|---|
| Chemical Formula | C10H18O |
|---|
| Average Molecular Weight | 154.2493 |
|---|
| Monoisotopic Molecular Weight | 154.135765198 |
|---|
| IUPAC Name | 2-[(1R)-4-methylcyclohex-3-en-1-yl]propan-2-ol |
|---|
| Traditional Name | (+)-α-terpineol |
|---|
| CAS Registry Number | 7785-53-7 |
|---|
| SMILES | CC1=CC[C@@H](CC1)C(C)(C)O |
|---|
| InChI Identifier | InChI=1S/C10H18O/c1-8-4-6-9(7-5-8)10(2,3)11/h4,9,11H,5-7H2,1-3H3/t9-/m0/s1 |
|---|
| InChI Key | WUOACPNHFRMFPN-VIFPVBQESA-N |
|---|
| Chemical Taxonomy |
|---|
| Description | Belongs to the class of organic compounds known as menthane monoterpenoids. These are monoterpenoids with a structure based on the o-, m-, or p-menthane backbone. P-menthane consists of the cyclohexane ring with a methyl group and a (2-methyl)-propyl group at the 1 and 4 ring position, respectively. The o- and m- menthanes are much rarer, and presumably arise by alkyl migration of p-menthanes. |
|---|
| Kingdom | Organic compounds |
|---|
| Super Class | Lipids and lipid-like molecules |
|---|
| Class | Prenol lipids |
|---|
| Sub Class | Monoterpenoids |
|---|
| Direct Parent | Menthane monoterpenoids |
|---|
| Alternative Parents | |
|---|
| Substituents | - P-menthane monoterpenoid
- Monocyclic monoterpenoid
- Tertiary alcohol
- Organic oxygen compound
- Hydrocarbon derivative
- Organooxygen compound
- Alcohol
- Aliphatic homomonocyclic compound
|
|---|
| Molecular Framework | Aliphatic homomonocyclic compounds |
|---|
| External Descriptors | |
|---|
| Ontology |
|---|
| Not Available | Not Available |
|---|
| Physical Properties |
|---|
| State | Solid |
|---|
| Experimental Molecular Properties | | Property | Value | Reference |
|---|
| Melting Point | 37.5 °C | Not Available | | Boiling Point | 217.50 °C. @ 760.00 mm Hg (est) | The Good Scents Company Information System | | Water Solubility | 0.71 mg/mL at 25 °C | Not Available | | LogP | 2.98 | LI,J & PERDUE,EM (1995) |
|
|---|
| Experimental Chromatographic Properties | Not Available |
|---|
| Predicted Molecular Properties | |
|---|
| Predicted Chromatographic Properties | Predicted Collision Cross SectionsPredicted Retention Times Underivatized| Chromatographic Method | Retention Time | Reference |
|---|
| Measured using a Waters Acquity ultraperformance liquid chromatography (UPLC) ethylene-bridged hybrid (BEH) C18 column (100 mm × 2.1 mm; 1.7 μmparticle diameter). Predicted by Afia on May 17, 2022. Predicted by Afia on May 17, 2022. | 4.79 minutes | 32390414 | | Predicted by Siyang on May 30, 2022 | 14.041 minutes | 33406817 | | Predicted by Siyang using ReTip algorithm on June 8, 2022 | 2.73 minutes | 32390414 |
Predicted Kovats Retention IndicesUnderivatizedDerivatized |
|---|
| Disease References | | Nonalcoholic fatty liver disease |
|---|
- Raman M, Ahmed I, Gillevet PM, Probert CS, Ratcliffe NM, Smith S, Greenwood R, Sikaroodi M, Lam V, Crotty P, Bailey J, Myers RP, Rioux KP: Fecal microbiome and volatile organic compound metabolome in obese humans with nonalcoholic fatty liver disease. Clin Gastroenterol Hepatol. 2013 Jul;11(7):868-75.e1-3. doi: 10.1016/j.cgh.2013.02.015. Epub 2013 Feb 27. [PubMed:23454028 ]
|
|
|---|
| General References | - Zlatkis A, Liebich HM: Profile of volatile metabolites in human urine. Clin Chem. 1971 Jul;17(7):592-4. [PubMed:5556886 ]
- Mondello F, De Bernardis F, Girolamo A, Cassone A, Salvatore G: In vivo activity of terpinen-4-ol, the main bioactive component of Melaleuca alternifolia Cheel (tea tree) oil against azole-susceptible and -resistant human pathogenic Candida species. BMC Infect Dis. 2006 Nov 3;6:158. [PubMed:17083732 ]
- Hart PH, Brand C, Carson CF, Riley TV, Prager RH, Finlay-Jones JJ: Terpinen-4-ol, the main component of the essential oil of Melaleuca alternifolia (tea tree oil), suppresses inflammatory mediator production by activated human monocytes. Inflamm Res. 2000 Nov;49(11):619-26. [PubMed:11131302 ]
- Calcabrini A, Stringaro A, Toccacieli L, Meschini S, Marra M, Colone M, Salvatore G, Mondello F, Arancia G, Molinari A: Terpinen-4-ol, the main component of Melaleuca alternifolia (tea tree) oil inhibits the in vitro growth of human melanoma cells. J Invest Dermatol. 2004 Feb;122(2):349-60. [PubMed:15009716 ]
- Simons K, Toomre D: Lipid rafts and signal transduction. Nat Rev Mol Cell Biol. 2000 Oct;1(1):31-9. [PubMed:11413487 ]
- Watson AD: Thematic review series: systems biology approaches to metabolic and cardiovascular disorders. Lipidomics: a global approach to lipid analysis in biological systems. J Lipid Res. 2006 Oct;47(10):2101-11. Epub 2006 Aug 10. [PubMed:16902246 ]
- Sethi JK, Vidal-Puig AJ: Thematic review series: adipocyte biology. Adipose tissue function and plasticity orchestrate nutritional adaptation. J Lipid Res. 2007 Jun;48(6):1253-62. Epub 2007 Mar 20. [PubMed:17374880 ]
- Lingwood D, Simons K: Lipid rafts as a membrane-organizing principle. Science. 2010 Jan 1;327(5961):46-50. doi: 10.1126/science.1174621. [PubMed:20044567 ]
- (). Yannai, Shmuel. (2004) Dictionary of food compounds with CD-ROM: Additives, flavors, and ingredients. Boca Raton: Chapman & Hall/CRC.. .
- Gunstone, Frank D., John L. Harwood, and Albert J. Dijkstra (2007). The lipid handbook with CD-ROM. CRC Press.
|
|---|