| Record Information |
|---|
| Version | 5.0 |
|---|
| Status | Expected but not Quantified |
|---|
| Creation Date | 2012-09-11 18:53:48 UTC |
|---|
| Update Date | 2022-03-07 02:53:59 UTC |
|---|
| HMDB ID | HMDB0034103 |
|---|
| Secondary Accession Numbers | |
|---|
| Metabolite Identification |
|---|
| Common Name | Tomatine |
|---|
| Description | Tomatine is a mildly toxic glycoalkaloid or glycospirosolane (steroidal alkaloids whose structure contains a spirosolane skeleton) found in the stems and leaves of tomato plants as well as in the fruit of unripened (green) tomatoes (up to 500 mg/kg). Red, ripe tomatoes have somewhat reduced amounts of tomatine. A toxic dose of tomatine for an adult human would appear to require the consumption of at least 500 g of tomato leaves in one sitting (“Toxic Plants of North America” (Iowa State University Press, 2001)). Tomatine is known to have fungicidal and antimicrobial properties and is likely produced by tomato plants as a defense against bacteria, fungi, viruses, and insects (PMID: 19514731 ). Some microbes produce an enzyme called tomatinase which can degrade tomatine, rendering it ineffective as an antimicrobial (PMID: 18835993 ).Tomatine has historically been used as a reagent in analytical chemistry for precipitating cholesterol from solution (PMID: 4362143 ). When lab animals ingest tomatine, essentially all of it passes through the animal unabsorbed. Tomatine apparently binds to cholesterol in the digestive tract, and the largely insoluble combination is excreted — ridding the body of both the alkaloid and cholesterol. Experiments with hamsters have shown that both tomatine-rich green tomatoes and purified tomatine can substantially lower the levels of undesirable LDL cholesterol while maintaining norma |
|---|
| Structure | CC1C2C(CC3C4CCC5CC(CCC5(C)C4CCC23C)OC2OC(CO)C(OC3OC(CO)C(O)C(OC4OCC(O)C(O)C4O)C3OC3OC(CO)C(O)C(O)C3O)C(O)C2O)OC11CCC(C)CN1 InChI=1S/C50H83NO21/c1-20-7-12-50(51-15-20)21(2)32-28(72-50)14-26-24-6-5-22-13-23(8-10-48(22,3)25(24)9-11-49(26,32)4)65-45-40(63)37(60)41(31(18-54)68-45)69-47-43(71-46-39(62)36(59)34(57)29(16-52)66-46)42(35(58)30(17-53)67-47)70-44-38(61)33(56)27(55)19-64-44/h20-47,51-63H,5-19H2,1-4H3 |
|---|
| Synonyms | | Value | Source |
|---|
| A''-tomatidine | HMDB | | a-Tomatine | HMDB | | alpha -Tomatine | HMDB | | alpha-Tomatine | HMDB | | Lycopersicin | HMDB | | Tomatidine, glycoside | HMDB | | Tomatin | HMDB | | Tomatine | MeSH |
|
|---|
| Chemical Formula | C50H83NO21 |
|---|
| Average Molecular Weight | 1034.1881 |
|---|
| Monoisotopic Molecular Weight | 1033.545758723 |
|---|
| IUPAC Name | 2-[(2-{[4,5-dihydroxy-2-(hydroxymethyl)-6-{5',7,9,13-tetramethyl-5-oxaspiro[pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosane-6,2'-piperidine]oxy}oxan-3-yl]oxy}-5-hydroxy-6-(hydroxymethyl)-4-[(3,4,5-trihydroxyoxan-2-yl)oxy]oxan-3-yl)oxy]-6-(hydroxymethyl)oxane-3,4,5-triol |
|---|
| Traditional Name | 2-[(2-{[4,5-dihydroxy-2-(hydroxymethyl)-6-{5',7,9,13-tetramethyl-5-oxaspiro[pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosane-6,2'-piperidine]oxy}oxan-3-yl]oxy}-5-hydroxy-6-(hydroxymethyl)-4-[(3,4,5-trihydroxyoxan-2-yl)oxy]oxan-3-yl)oxy]-6-(hydroxymethyl)oxane-3,4,5-triol |
|---|
| CAS Registry Number | 17406-45-0 |
|---|
| SMILES | CC1C2C(CC3C4CCC5CC(CCC5(C)C4CCC23C)OC2OC(CO)C(OC3OC(CO)C(O)C(OC4OCC(O)C(O)C4O)C3OC3OC(CO)C(O)C(O)C3O)C(O)C2O)OC11CCC(C)CN1 |
|---|
| InChI Identifier | InChI=1S/C50H83NO21/c1-20-7-12-50(51-15-20)21(2)32-28(72-50)14-26-24-6-5-22-13-23(8-10-48(22,3)25(24)9-11-49(26,32)4)65-45-40(63)37(60)41(31(18-54)68-45)69-47-43(71-46-39(62)36(59)34(57)29(16-52)66-46)42(35(58)30(17-53)67-47)70-44-38(61)33(56)27(55)19-64-44/h20-47,51-63H,5-19H2,1-4H3 |
|---|
| InChI Key | REJLGAUYTKNVJM-UHFFFAOYSA-N |
|---|
| Chemical Taxonomy |
|---|
| Description | Belongs to the class of organic compounds known as steroidal saponins. These are saponins in which the aglycone moiety is a steroid. The steroidal aglycone is usually a spirostane, furostane, spirosolane, solanidane, or curcubitacin derivative. |
|---|
| Kingdom | Organic compounds |
|---|
| Super Class | Lipids and lipid-like molecules |
|---|
| Class | Steroids and steroid derivatives |
|---|
| Sub Class | Steroidal glycosides |
|---|
| Direct Parent | Steroidal saponins |
|---|
| Alternative Parents | |
|---|
| Substituents | - Steroidal saponin
- Diterpene glycoside
- Spirosolane skeleton
- Oligosaccharide
- Diterpenoid
- Steroidal alkaloid
- Azasteroid
- Terpene glycoside
- Glycosyl compound
- O-glycosyl compound
- Azaspirodecane
- Alkaloid or derivatives
- Oxane
- Piperidine
- Tetrahydrofuran
- Secondary alcohol
- Hemiaminal
- Polyol
- Secondary amine
- Acetal
- Secondary aliphatic amine
- Oxacycle
- Organoheterocyclic compound
- Azacycle
- Primary alcohol
- Organonitrogen compound
- Hydrocarbon derivative
- Organopnictogen compound
- Organooxygen compound
- Organic oxygen compound
- Organic nitrogen compound
- Amine
- Alcohol
- Aliphatic heteropolycyclic compound
|
|---|
| Molecular Framework | Aliphatic heteropolycyclic compounds |
|---|
| External Descriptors | Not Available |
|---|
| Ontology |
|---|
| Physiological effect | Not Available |
|---|
| Disposition | |
|---|
| Process | |
|---|
| Role | |
|---|
| Physical Properties |
|---|
| State | Solid |
|---|
| Experimental Molecular Properties | | Property | Value | Reference |
|---|
| Melting Point | 263 - 267 °C | Not Available | | Boiling Point | Not Available | Not Available | | Water Solubility | Not Available | Not Available | | LogP | Not Available | Not Available |
|
|---|
| Experimental Chromatographic Properties | Not Available |
|---|
| Predicted Molecular Properties | |
|---|
| Predicted Chromatographic Properties | Predicted Collision Cross SectionsPredicted Retention Times Underivatized| Chromatographic Method | Retention Time | Reference |
|---|
| Measured using a Waters Acquity ultraperformance liquid chromatography (UPLC) ethylene-bridged hybrid (BEH) C18 column (100 mm × 2.1 mm; 1.7 μmparticle diameter). Predicted by Afia on May 17, 2022. Predicted by Afia on May 17, 2022. | 4.48 minutes | 32390414 | | Predicted by Siyang on May 30, 2022 | 14.9669 minutes | 33406817 | | Predicted by Siyang using ReTip algorithm on June 8, 2022 | 5.76 minutes | 32390414 | | AjsUoB = Accucore 150 Amide HILIC with 10mM Ammonium Formate, 0.1% Formic Acid | 470.5 seconds | 40023050 | | Fem_Long = Waters ACQUITY UPLC HSS T3 C18 with Water:MeOH and 0.1% Formic Acid | 2475.1 seconds | 40023050 | | Fem_Lipids = Ascentis Express C18 with (60:40 water:ACN):(90:10 IPA:ACN) and 10mM NH4COOH + 0.1% Formic Acid | 187.5 seconds | 40023050 | | Life_Old = Waters ACQUITY UPLC BEH C18 with Water:(20:80 acetone:ACN) and 0.1% Formic Acid | 164.8 seconds | 40023050 | | Life_New = RP Waters ACQUITY UPLC HSS T3 C18 with Water:(30:70 MeOH:ACN) and 0.1% Formic Acid | 224.1 seconds | 40023050 | | RIKEN = Waters ACQUITY UPLC BEH C18 with Water:ACN and 0.1% Formic Acid | 172.5 seconds | 40023050 | | Eawag_XBridgeC18 = XBridge C18 3.5u 2.1x50 mm with Water:MeOH and 0.1% Formic Acid | 465.9 seconds | 40023050 | | BfG_NTS_RP1 =Agilent Zorbax Eclipse Plus C18 (2.1 mm x 150 mm, 3.5 um) with Water:ACN and 0.1% Formic Acid | 529.6 seconds | 40023050 | | HILIC_BDD_2 = Merck SeQuant ZIC-HILIC with ACN(0.1% formic acid):water(16 mM ammonium formate) | 1210.5 seconds | 40023050 | | UniToyama_Atlantis = RP Waters Atlantis T3 (2.1 x 150 mm, 5 um) with ACN:Water and 0.1% Formic Acid | 1020.8 seconds | 40023050 | | BDD_C18 = Hypersil Gold 1.9µm C18 with Water:ACN and 0.1% Formic Acid | 470.2 seconds | 40023050 | | UFZ_Phenomenex = Kinetex Core-Shell C18 2.6 um, 3.0 x 100 mm, Phenomenex with Water:MeOH and 0.1% Formic Acid | 1291.0 seconds | 40023050 | | SNU_RIKEN_POS = Waters ACQUITY UPLC BEH C18 with Water:ACN and 0.1% Formic Acid | 328.1 seconds | 40023050 | | RPMMFDA = Waters ACQUITY UPLC BEH C18 with Water:ACN and 0.1% Formic Acid | 380.0 seconds | 40023050 | | MTBLS87 = Merck SeQuant ZIC-pHILIC column with ACN:Water and :ammonium carbonate | 487.1 seconds | 40023050 | | KI_GIAR_zic_HILIC_pH2_7 = Merck SeQuant ZIC-HILIC with ACN:Water and 0.1% FA | 542.9 seconds | 40023050 | | Meister zic-pHILIC pH9.3 = Merck SeQuant ZIC-pHILIC column with ACN:Water 5mM NH4Ac pH9.3 and 5mM ammonium acetate in water | 273.1 seconds | 40023050 |
Predicted Kovats Retention IndicesNot Available |
|---|
| MS/MS Spectra| Spectrum Type | Description | Splash Key | Deposition Date | Source | View |
|---|
| Experimental LC-MS/MS | LC-MS/MS Spectrum - Tomatine 6V, Positive-QTOF | splash10-001i-9000000000-2d0e0cccacc5de1c1d98 | 2021-09-20 | HMDB team, MONA | View Spectrum | | Predicted LC-MS/MS | Predicted LC-MS/MS Spectrum - Tomatine 10V, Positive-QTOF | splash10-0gb9-5204670292-fefb24de6d82cf624d9e | 2015-04-24 | Wishart Lab | View Spectrum | | Predicted LC-MS/MS | Predicted LC-MS/MS Spectrum - Tomatine 20V, Positive-QTOF | splash10-014i-0214950550-746c6066dceba3c1c1f4 | 2015-04-24 | Wishart Lab | View Spectrum | | Predicted LC-MS/MS | Predicted LC-MS/MS Spectrum - Tomatine 40V, Positive-QTOF | splash10-014r-2307930620-f9c49ce8d08133042e04 | 2015-04-24 | Wishart Lab | View Spectrum | | Predicted LC-MS/MS | Predicted LC-MS/MS Spectrum - Tomatine 10V, Negative-QTOF | splash10-03fr-9602540041-49730afc04a87b1ba556 | 2015-04-25 | Wishart Lab | View Spectrum | | Predicted LC-MS/MS | Predicted LC-MS/MS Spectrum - Tomatine 20V, Negative-QTOF | splash10-03fr-5901730121-29848bddc6af802971d0 | 2015-04-25 | Wishart Lab | View Spectrum | | Predicted LC-MS/MS | Predicted LC-MS/MS Spectrum - Tomatine 40V, Negative-QTOF | splash10-03fr-4902610100-a4eb02a2dcccce405c80 | 2015-04-25 | Wishart Lab | View Spectrum | | Predicted LC-MS/MS | Predicted LC-MS/MS Spectrum - Tomatine 10V, Positive-QTOF | splash10-001i-9000200010-0880a3964aaaa8978455 | 2021-09-22 | Wishart Lab | View Spectrum | | Predicted LC-MS/MS | Predicted LC-MS/MS Spectrum - Tomatine 20V, Positive-QTOF | splash10-00ls-6309310021-87a1da82a62eb8f89624 | 2021-09-22 | Wishart Lab | View Spectrum | | Predicted LC-MS/MS | Predicted LC-MS/MS Spectrum - Tomatine 40V, Positive-QTOF | splash10-0a6r-5232900013-40916e3761a4a30c788b | 2021-09-22 | Wishart Lab | View Spectrum | | Predicted LC-MS/MS | Predicted LC-MS/MS Spectrum - Tomatine 10V, Negative-QTOF | splash10-001i-9000010001-553f7d4162d435d3da11 | 2021-09-22 | Wishart Lab | View Spectrum | | Predicted LC-MS/MS | Predicted LC-MS/MS Spectrum - Tomatine 20V, Negative-QTOF | splash10-0a59-9100000028-2c472296ac894f5854a7 | 2021-09-22 | Wishart Lab | View Spectrum | | Predicted LC-MS/MS | Predicted LC-MS/MS Spectrum - Tomatine 40V, Negative-QTOF | splash10-052f-9002210314-69b0c89546960ad0f26d | 2021-09-22 | Wishart Lab | View Spectrum |
NMR Spectra| Spectrum Type | Description | Deposition Date | Source | View |
|---|
| Predicted 1D NMR | 1H NMR Spectrum (1D, 100 MHz, D2O, predicted) | 2021-09-25 | Wishart Lab | View Spectrum | | Predicted 1D NMR | 13C NMR Spectrum (1D, 100 MHz, D2O, predicted) | 2021-09-25 | Wishart Lab | View Spectrum | | Predicted 1D NMR | 1H NMR Spectrum (1D, 1000 MHz, D2O, predicted) | 2021-09-25 | Wishart Lab | View Spectrum | | Predicted 1D NMR | 13C NMR Spectrum (1D, 1000 MHz, D2O, predicted) | 2021-09-25 | Wishart Lab | View Spectrum | | Predicted 1D NMR | 1H NMR Spectrum (1D, 200 MHz, D2O, predicted) | 2021-09-25 | Wishart Lab | View Spectrum | | Predicted 1D NMR | 13C NMR Spectrum (1D, 200 MHz, D2O, predicted) | 2021-09-25 | Wishart Lab | View Spectrum | | Predicted 1D NMR | 1H NMR Spectrum (1D, 300 MHz, D2O, predicted) | 2021-09-25 | Wishart Lab | View Spectrum | | Predicted 1D NMR | 13C NMR Spectrum (1D, 300 MHz, D2O, predicted) | 2021-09-25 | Wishart Lab | View Spectrum | | Predicted 1D NMR | 1H NMR Spectrum (1D, 400 MHz, D2O, predicted) | 2021-09-25 | Wishart Lab | View Spectrum | | Predicted 1D NMR | 13C NMR Spectrum (1D, 400 MHz, D2O, predicted) | 2021-09-25 | Wishart Lab | View Spectrum | | Predicted 1D NMR | 1H NMR Spectrum (1D, 500 MHz, D2O, predicted) | 2021-09-25 | Wishart Lab | View Spectrum | | Predicted 1D NMR | 13C NMR Spectrum (1D, 500 MHz, D2O, predicted) | 2021-09-25 | Wishart Lab | View Spectrum | | Predicted 1D NMR | 1H NMR Spectrum (1D, 600 MHz, D2O, predicted) | 2021-09-25 | Wishart Lab | View Spectrum | | Predicted 1D NMR | 13C NMR Spectrum (1D, 600 MHz, D2O, predicted) | 2021-09-25 | Wishart Lab | View Spectrum | | Predicted 1D NMR | 1H NMR Spectrum (1D, 700 MHz, D2O, predicted) | 2021-09-25 | Wishart Lab | View Spectrum | | Predicted 1D NMR | 13C NMR Spectrum (1D, 700 MHz, D2O, predicted) | 2021-09-25 | Wishart Lab | View Spectrum | | Predicted 1D NMR | 1H NMR Spectrum (1D, 800 MHz, D2O, predicted) | 2021-09-25 | Wishart Lab | View Spectrum | | Predicted 1D NMR | 13C NMR Spectrum (1D, 800 MHz, D2O, predicted) | 2021-09-25 | Wishart Lab | View Spectrum | | Predicted 1D NMR | 1H NMR Spectrum (1D, 900 MHz, D2O, predicted) | 2021-09-25 | Wishart Lab | View Spectrum | | Predicted 1D NMR | 13C NMR Spectrum (1D, 900 MHz, D2O, predicted) | 2021-09-25 | Wishart Lab | View Spectrum |
|
|---|
| General References | - Friedman M, Levin CE, Lee SU, Kim HJ, Lee IS, Byun JO, Kozukue N: Tomatine-containing green tomato extracts inhibit growth of human breast, colon, liver, and stomach cancer cells. J Agric Food Chem. 2009 Jul 8;57(13):5727-33. doi: 10.1021/jf900364j. [PubMed:19514731 ]
- Seipke RF, Loria R: Streptomyces scabies 87-22 possesses a functional tomatinase. J Bacteriol. 2008 Dec;190(23):7684-92. doi: 10.1128/JB.01010-08. Epub 2008 Oct 3. [PubMed:18835993 ]
- Cayen MN: Effect of dietary tomatine on cholesterol metabolism in the rat. J Lipid Res. 1971 Jul;12(4):482-90. [PubMed:4362143 ]
- Friedman M, Fitch TE, Yokoyama WE: Lowering of plasma LDL cholesterol in hamsters by the tomato glycoalkaloid tomatine. Food Chem Toxicol. 2000 Jul;38(7):549-53. [PubMed:10942315 ]
- Morrow WJ, Yang YW, Sheikh NA: Immunobiology of the Tomatine adjuvant. Vaccine. 2004 Jun 23;22(19):2380-4. [PubMed:15193398 ]
- Simons K, Toomre D: Lipid rafts and signal transduction. Nat Rev Mol Cell Biol. 2000 Oct;1(1):31-9. [PubMed:11413487 ]
- Watson AD: Thematic review series: systems biology approaches to metabolic and cardiovascular disorders. Lipidomics: a global approach to lipid analysis in biological systems. J Lipid Res. 2006 Oct;47(10):2101-11. Epub 2006 Aug 10. [PubMed:16902246 ]
- Sethi JK, Vidal-Puig AJ: Thematic review series: adipocyte biology. Adipose tissue function and plasticity orchestrate nutritional adaptation. J Lipid Res. 2007 Jun;48(6):1253-62. Epub 2007 Mar 20. [PubMed:17374880 ]
- Lingwood D, Simons K: Lipid rafts as a membrane-organizing principle. Science. 2010 Jan 1;327(5961):46-50. doi: 10.1126/science.1174621. [PubMed:20044567 ]
- (). Yannai, Shmuel. (2004) Dictionary of food compounds with CD-ROM: Additives, flavors, and ingredients. Boca Raton: Chapman & Hall/CRC.. .
- Gunstone, Frank D., John L. Harwood, and Albert J. Dijkstra (2007). The lipid handbook with CD-ROM. CRC Press.
|
|---|