Hmdb loader
Survey
Record Information
Version5.0
StatusExpected but not Quantified
Creation Date2012-09-14 22:21:17 UTC
Update Date2022-11-30 19:04:14 UTC
HMDB IDHMDB0042061
Secondary Accession Numbers
  • HMDB42061
Metabolite Identification
Common NameTG(14:0/14:0/14:0)
DescriptionTG(14:0/14:0/14:0) belongs to the family of triradyglycerols, which are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. Their general formula is [R1]OCC(CO[R2])O[R3]. TG(14:0/14:0/14:0) is made up of one tetradecanoyl(R1), one tetradecanoyl(R2), and one tetradecanoyl(R3).
Structure
Data?1563863726
Synonyms
ValueSource
1,2,3-Propanetriol tritetradecanoateChEBI
1,2,3-TrimyristoylglycerolChEBI
1,2,3-TritetradecanoylglycerolChEBI
Glycerol trimyristateChEBI
Glyceryl trimyristateChEBI
Glyceryl tritetradecanoateChEBI
Myristic acid triglycerideChEBI
Myristic triglycerideChEBI
MyristinChEBI
TAG(14:0/14:0/14:0)ChEBI
TAG(42:0)ChEBI
Tetradecanoic acid, 1,2,3-propanetriyl esterChEBI
TG 14:0/14:0/14:0ChEBI
TG(42:0)ChEBI
Tracylglycerol(14:0/14:0/14:0)ChEBI
Tracylglycerol(42:0)ChEBI
TrimyristoylglycerolChEBI
TritetradecanoylglycerolChEBI
1,2,3-Propanetriol tritetradecanoic acidGenerator
Glycerol trimyristic acidGenerator
Glyceryl trimyristic acidGenerator
Glyceryl tritetradecanoic acidGenerator
Myristate triglycerideGenerator
Tetradecanoate, 1,2,3-propanetriyl esterGenerator
1,2,3-Tritetradecanoyl-rac-glycerolHMDB
1-Myristoyl-2-myristoyl-3-myristoyl-glycerolHMDB
1-Tetradecanoyl-2-tetradecanoyl-3-tetradecanoyl-glycerolHMDB
2,3-Bis(tetradecanoyloxy)propyl myristateHMDB
Dynasan 114HMDB
Glycerol tritetradecanoateHMDB
Myristin, tri- (8ci)HMDB
Tetradecanoic acid, 1,1',1''-(1,2,3-propanetriyl) esterHMDB
Tri-myristinHMDB
TriacylglycerolHMDB
TriglycerideHMDB
TrimyristinHMDB
TG(14:0/14:0/14:0)Lipid Annotator, ChEBI
Chemical FormulaC45H86O6
Average Molecular Weight723.1607
Monoisotopic Molecular Weight722.642440484
IUPAC Name1,3-bis(tetradecanoyloxy)propan-2-yl tetradecanoate
Traditional Nametrimyristin
CAS Registry Number555-45-3
SMILES
[H]C(COC(=O)CCCCCCCCCCCCC)(COC(=O)CCCCCCCCCCCCC)OC(=O)CCCCCCCCCCCCC
InChI Identifier
InChI=1S/C45H86O6/c1-4-7-10-13-16-19-22-25-28-31-34-37-43(46)49-40-42(51-45(48)39-36-33-30-27-24-21-18-15-12-9-6-3)41-50-44(47)38-35-32-29-26-23-20-17-14-11-8-5-2/h42H,4-41H2,1-3H3
InChI KeyDUXYWXYOBMKGIN-UHFFFAOYSA-N
Chemical Taxonomy
Description Belongs to the class of organic compounds known as triacylglycerols. These are glycerides consisting of three fatty acid chains covalently bonded to a glycerol molecule through ester linkages.
KingdomOrganic compounds
Super ClassLipids and lipid-like molecules
ClassGlycerolipids
Sub ClassTriradylcglycerols
Direct ParentTriacylglycerols
Alternative Parents
Substituents
  • Triacyl-sn-glycerol
  • Tricarboxylic acid or derivatives
  • Fatty acid ester
  • Fatty acyl
  • Carboxylic acid ester
  • Carboxylic acid derivative
  • Organic oxygen compound
  • Organic oxide
  • Hydrocarbon derivative
  • Organooxygen compound
  • Carbonyl group
  • Aliphatic acyclic compound
Molecular FrameworkAliphatic acyclic compounds
External Descriptors
Ontology
Physiological effect
Disposition
Biological locationRoute of exposureSource
Process
Role
Physical Properties
StateSolid
Experimental Molecular Properties
PropertyValueReference
Melting Point58.5 °CNot Available
Boiling PointNot AvailableNot Available
Water SolubilityNot AvailableNot Available
LogP16.26Extrapolated
Experimental Chromatographic PropertiesNot Available
Predicted Molecular Properties
PropertyValueSource
Water Solubility1.3e-05 g/LALOGPS
logP10.31ALOGPS
logP16.26ChemAxon
logS-7.7ALOGPS
pKa (Strongest Basic)-6.6ChemAxon
Physiological Charge0ChemAxon
Hydrogen Acceptor Count3ChemAxon
Hydrogen Donor Count0ChemAxon
Polar Surface Area78.9 ŲChemAxon
Rotatable Bond Count44ChemAxon
Refractivity213.68 m³·mol⁻¹ChemAxon
Polarizability96.81 ųChemAxon
Number of Rings0ChemAxon
BioavailabilityNoChemAxon
Rule of FiveNoChemAxon
Ghose FilterNoChemAxon
Veber's RuleNoChemAxon
MDDR-like RuleNoChemAxon
Predicted Chromatographic Properties

Predicted Collision Cross Sections

PredictorAdduct TypeCCS Value (Å2)Reference
DarkChem[M+H]+273.43831661259
DarkChem[M-H]-265.13431661259
DeepCCS[M+H]+284.36530932474
DeepCCS[M-H]-282.00730932474
DeepCCS[M-2H]-314.89230932474
DeepCCS[M+Na]+290.45830932474
AllCCS[M+H]+296.432859911
AllCCS[M+H-H2O]+296.432859911
AllCCS[M+NH4]+296.432859911
AllCCS[M+Na]+296.432859911
AllCCS[M-H]-276.832859911
AllCCS[M+Na-2H]-281.732859911
AllCCS[M+HCOO]-287.232859911

Predicted Kovats Retention Indices

Underivatized

MetaboliteSMILESKovats RI ValueColumn TypeReference
TG(14:0/14:0/14:0)[H]C(COC(=O)CCCCCCCCCCCCC)(COC(=O)CCCCCCCCCCCCC)OC(=O)CCCCCCCCCCCCC5009.2Standard polar33892256
TG(14:0/14:0/14:0)[H]C(COC(=O)CCCCCCCCCCCCC)(COC(=O)CCCCCCCCCCCCC)OC(=O)CCCCCCCCCCCCC4514.7Standard non polar33892256
TG(14:0/14:0/14:0)[H]C(COC(=O)CCCCCCCCCCCCC)(COC(=O)CCCCCCCCCCCCC)OC(=O)CCCCCCCCCCCCC4995.7Semi standard non polar33892256
Spectra

GC-MS Spectra

Spectrum TypeDescriptionSplash KeyDeposition DateSourceView
Experimental GC-MSGC-MS Spectrum - TG(14:0/14:0/14:0) EI-B (Non-derivatized)splash10-01ot-3192600000-544e33d6694aa5ccf3e52017-09-12HMDB team, MONA, MassBankView Spectrum
Experimental GC-MSGC-MS Spectrum - TG(14:0/14:0/14:0) EI-B (Non-derivatized)splash10-01ot-3192600000-544e33d6694aa5ccf3e52018-05-18HMDB team, MONA, MassBankView Spectrum
Predicted GC-MSPredicted GC-MS Spectrum - TG(14:0/14:0/14:0) GC-MS (Non-derivatized) - 70eV, PositiveNot Available2021-10-13Wishart LabView Spectrum

MS/MS Spectra

Spectrum TypeDescriptionSplash KeyDeposition DateSourceView
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - TG(14:0/14:0/14:0) 10V, Positive-QTOFsplash10-0006-0000000900-396577773223fda3ba4f2017-10-04Wishart LabView Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - TG(14:0/14:0/14:0) 20V, Positive-QTOFsplash10-0006-0000000900-396577773223fda3ba4f2017-10-04Wishart LabView Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - TG(14:0/14:0/14:0) 40V, Positive-QTOFsplash10-006t-0000900700-9dda28d1e6f293f607a52017-10-04Wishart LabView Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - TG(14:0/14:0/14:0) 10V, Positive-QTOFsplash10-0002-0000000900-487bf2cf36214179ac312021-09-22Wishart LabView Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - TG(14:0/14:0/14:0) 20V, Positive-QTOFsplash10-0002-0000000900-487bf2cf36214179ac312021-09-22Wishart LabView Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - TG(14:0/14:0/14:0) 40V, Positive-QTOFsplash10-0002-0000000900-487bf2cf36214179ac312021-09-22Wishart LabView Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - TG(14:0/14:0/14:0) 10V, Negative-QTOFsplash10-00fr-0070510900-dfb0ad823350a6dc31392021-09-24Wishart LabView Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - TG(14:0/14:0/14:0) 20V, Negative-QTOFsplash10-0pxs-0090200000-e06b0c234354638d51272021-09-24Wishart LabView Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - TG(14:0/14:0/14:0) 40V, Negative-QTOFsplash10-056r-0290100000-ae1db544e278fbf885f92021-09-24Wishart LabView Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - TG(14:0/14:0/14:0) 10V, Positive-QTOFsplash10-004i-0000000900-ef55c4ed517a7cf683c22021-09-24Wishart LabView Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - TG(14:0/14:0/14:0) 20V, Positive-QTOFsplash10-004i-0000000900-ef55c4ed517a7cf683c22021-09-24Wishart LabView Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - TG(14:0/14:0/14:0) 40V, Positive-QTOFsplash10-0uii-0090090900-07e83a6429c414defd462021-09-24Wishart LabView Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - TG(14:0/14:0/14:0) 10V, Positive-QTOFsplash10-00di-5020305900-6df82ce747d12f594b5b2021-09-24Wishart LabView Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - TG(14:0/14:0/14:0) 20V, Positive-QTOFsplash10-08g0-9151317100-81a3f1d03a780081c9c22021-09-24Wishart LabView Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - TG(14:0/14:0/14:0) 40V, Positive-QTOFsplash10-0909-2392110000-70fab857e040f8a773cc2021-09-24Wishart LabView Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - TG(14:0/14:0/14:0) 10V, Positive-QTOFsplash10-0006-0000000900-c83d51e3f6cbcd42c11e2021-09-25Wishart LabView Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - TG(14:0/14:0/14:0) 20V, Positive-QTOFsplash10-0006-0000000900-c83d51e3f6cbcd42c11e2021-09-25Wishart LabView Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - TG(14:0/14:0/14:0) 40V, Positive-QTOFsplash10-006t-0010900700-60e08461be3e70355fa42021-09-25Wishart LabView Spectrum

NMR Spectra

Spectrum TypeDescriptionDeposition DateSourceView
Predicted 1D NMR13C NMR Spectrum (1D, 100 MHz, H2O, predicted)2022-08-21Wishart LabView Spectrum
Predicted 1D NMR1H NMR Spectrum (1D, 100 MHz, H2O, predicted)2022-08-21Wishart LabView Spectrum
Predicted 1D NMR13C NMR Spectrum (1D, 1000 MHz, H2O, predicted)2022-08-21Wishart LabView Spectrum
Predicted 1D NMR1H NMR Spectrum (1D, 1000 MHz, H2O, predicted)2022-08-21Wishart LabView Spectrum
Predicted 1D NMR13C NMR Spectrum (1D, 200 MHz, H2O, predicted)2022-08-21Wishart LabView Spectrum
Predicted 1D NMR1H NMR Spectrum (1D, 200 MHz, H2O, predicted)2022-08-21Wishart LabView Spectrum
Predicted 1D NMR13C NMR Spectrum (1D, 300 MHz, H2O, predicted)2022-08-21Wishart LabView Spectrum
Predicted 1D NMR1H NMR Spectrum (1D, 300 MHz, H2O, predicted)2022-08-21Wishart LabView Spectrum
Predicted 1D NMR13C NMR Spectrum (1D, 400 MHz, H2O, predicted)2022-08-21Wishart LabView Spectrum
Predicted 1D NMR1H NMR Spectrum (1D, 400 MHz, H2O, predicted)2022-08-21Wishart LabView Spectrum
Predicted 1D NMR13C NMR Spectrum (1D, 500 MHz, H2O, predicted)2022-08-21Wishart LabView Spectrum
Predicted 1D NMR1H NMR Spectrum (1D, 500 MHz, H2O, predicted)2022-08-21Wishart LabView Spectrum
Predicted 1D NMR13C NMR Spectrum (1D, 600 MHz, H2O, predicted)2022-08-21Wishart LabView Spectrum
Predicted 1D NMR1H NMR Spectrum (1D, 600 MHz, H2O, predicted)2022-08-21Wishart LabView Spectrum
Predicted 1D NMR13C NMR Spectrum (1D, 700 MHz, H2O, predicted)2022-08-21Wishart LabView Spectrum
Predicted 1D NMR1H NMR Spectrum (1D, 700 MHz, H2O, predicted)2022-08-21Wishart LabView Spectrum
Predicted 1D NMR13C NMR Spectrum (1D, 800 MHz, H2O, predicted)2022-08-21Wishart LabView Spectrum
Predicted 1D NMR1H NMR Spectrum (1D, 800 MHz, H2O, predicted)2022-08-21Wishart LabView Spectrum
Predicted 1D NMR13C NMR Spectrum (1D, 900 MHz, H2O, predicted)2022-08-21Wishart LabView Spectrum
Predicted 1D NMR1H NMR Spectrum (1D, 900 MHz, H2O, predicted)2022-08-21Wishart LabView Spectrum
Biological Properties
Cellular Locations
  • Extracellular
  • Membrane
Biospecimen LocationsNot Available
Tissue LocationsNot Available
Pathways
Normal Concentrations
Not Available
Abnormal Concentrations
Not Available
Predicted Concentrations
BiospecimenValueOriginal ageOriginal sexOriginal conditionComments
Blood0.031 +/- 0.018 uMAdult (>18 years old)BothNormal (Most Probable)Calculated using MetaboAnalyst
Blood17.544 +/- 5.133 uMAdult (>18 years old)BothNormal (Upper Limit)Calculated using MetaboAnalyst
Associated Disorders and Diseases
Disease ReferencesNone
Associated OMIM IDsNone
DrugBank IDNot Available
Phenol Explorer Compound IDNot Available
FooDB IDFDB002889
KNApSAcK IDNot Available
Chemspider ID10675
KEGG Compound IDNot Available
BioCyc IDNot Available
BiGG IDNot Available
Wikipedia LinkNot Available
METLIN IDNot Available
PubChem Compound11148
PDB IDNot Available
ChEBI ID77391
Food Biomarker OntologyNot Available
VMH IDNot Available
MarkerDB IDNot Available
Good Scents IDNot Available
References
Synthesis ReferenceNot Available
Material Safety Data Sheet (MSDS)Not Available
General References
  1. Pynn CJ, Picardi MV, Nicholson T, Wistuba D, Poets CF, Schleicher E, Perez-Gil J, Bernhard W: Myristate is selectively incorporated into surfactant and decreases dipalmitoylphosphatidylcholine without functional impairment. Am J Physiol Regul Integr Comp Physiol. 2010 Nov;299(5):R1306-16. doi: 10.1152/ajpregu.00380.2010. Epub 2010 Sep 1. [PubMed:20811010 ]
  2. Legrand P, Beauchamp E, Catheline D, Pedrono F, Rioux V: Short chain saturated fatty acids decrease circulating cholesterol and increase tissue PUFA content in the rat. Lipids. 2010 Nov;45(11):975-86. doi: 10.1007/s11745-010-3481-5. Epub 2010 Oct 6. [PubMed:20924709 ]
  3. Lesot P, Serhan Z, Aroulanda C, Billault I: Analytical contribution of NAD 2D-NMR spectroscopy in polypeptide mesophases to the investigation of triglycerides. Magn Reson Chem. 2012 Dec;50 Suppl 1:S2-11. doi: 10.1002/mrc.3855. [PubMed:23280656 ]
  4. Jaiswal P, Kumar P, Singh VK, Singh DK: Enzyme Inhibition by Molluscicidal Components of Myristica fragrans Houtt. in the Nervous Tissue of Snail Lymnaea acuminata. Enzyme Res. 2010;2010:478746. doi: 10.4061/2010/478746. Epub 2009 Dec 6. [PubMed:21048864 ]
  5. Jin SE, Kim CK, Kim YB: Cellular delivery of cationic lipid nanoparticle-based SMAD3 antisense oligonucleotides for the inhibition of collagen production in keloid fibroblasts. Eur J Pharm Biopharm. 2012 Sep;82(1):19-26. doi: 10.1016/j.ejpb.2012.05.015. Epub 2012 Jun 15. [PubMed:22705642 ]
  6. Joseph S, Bunjes H: Preparation of nanoemulsions and solid lipid nanoparticles by premix membrane emulsification. J Pharm Sci. 2012 Jul;101(7):2479-89. doi: 10.1002/jps.23163. Epub 2012 Apr 23. [PubMed:22527807 ]
  7. Li R, Eun JS, Lee MK: Pharmacokinetics and biodistribution of paclitaxel loaded in pegylated solid lipid nanoparticles after intravenous administration. Arch Pharm Res. 2011 Feb;34(2):331-7. doi: 10.1007/s12272-011-0220-2. Epub 2011 Mar 6. [PubMed:21380818 ]
  8. Ribeiro Dos Santos I, Richard J, Thies C, Pech B, Benoit JP: A supercritical fluid-based coating technology. 3: preparation and characterization of bovine serum albumin particles coated with lipids. J Microencapsul. 2003 Jan-Feb;20(1):110-28. [PubMed:12519706 ]
  9. Jasicka-Misiak I, Lipok J, Swider IA, Kafarski P: Possible fungistatic implications of betulin presence in betulaceae plants and their hymenochaetaceae parasitic fungi. Z Naturforsch C. 2010 Mar-Apr;65(3-4):201-6. [PubMed:20469638 ]
  10. Petersen S, Steiniger F, Fischer D, Fahr A, Bunjes H: The physical state of lipid nanoparticles influences their effect on in vitro cell viability. Eur J Pharm Biopharm. 2011 Sep;79(1):150-61. doi: 10.1016/j.ejpb.2011.03.022. Epub 2011 Mar 31. [PubMed:21458564 ]
  11. Petersen S, Fahr A, Bunjes H: Flow cytometry as a new approach to investigate drug transfer between lipid particles. Mol Pharm. 2010 Apr 5;7(2):350-63. doi: 10.1021/mp900130s. [PubMed:20063898 ]
  12. Noack A, Hause G, Mader K: Physicochemical characterization of curcuminoid-loaded solid lipid nanoparticles. Int J Pharm. 2012 Feb 28;423(2):440-51. doi: 10.1016/j.ijpharm.2011.12.011. Epub 2011 Dec 16. [PubMed:22197758 ]
  13. Nayak AP, Tiyaboonchai W, Patankar S, Madhusudhan B, Souto EB: Curcuminoids-loaded lipid nanoparticles: novel approach towards malaria treatment. Colloids Surf B Biointerfaces. 2010 Nov 1;81(1):263-73. doi: 10.1016/j.colsurfb.2010.07.020. Epub 2010 Jul 17. [PubMed:20688493 ]
  14. Manjunath K, Venkateswarlu V, Hussain A: Preparation and characterization of nitrendipine solid lipid nanoparticles. Pharmazie. 2011 Mar;66(3):178-86. [PubMed:21553647 ]
  15. Lugemwa FN: Extraction of betulin, trimyristin, eugenol and carnosic acid using water-organic solvent mixtures. Molecules. 2012 Aug 3;17(8):9274-82. doi: 10.3390/molecules17089274. [PubMed:22864237 ]
  16. Simons K, Toomre D: Lipid rafts and signal transduction. Nat Rev Mol Cell Biol. 2000 Oct;1(1):31-9. [PubMed:11413487 ]
  17. Watson AD: Thematic review series: systems biology approaches to metabolic and cardiovascular disorders. Lipidomics: a global approach to lipid analysis in biological systems. J Lipid Res. 2006 Oct;47(10):2101-11. Epub 2006 Aug 10. [PubMed:16902246 ]
  18. Sethi JK, Vidal-Puig AJ: Thematic review series: adipocyte biology. Adipose tissue function and plasticity orchestrate nutritional adaptation. J Lipid Res. 2007 Jun;48(6):1253-62. Epub 2007 Mar 20. [PubMed:17374880 ]
  19. Lingwood D, Simons K: Lipid rafts as a membrane-organizing principle. Science. 2010 Jan 1;327(5961):46-50. doi: 10.1126/science.1174621. [PubMed:20044567 ]
  20. Ghosh S, Strum JC, Bell RM: Lipid biochemistry: functions of glycerolipids and sphingolipids in cellular signaling. FASEB J. 1997 Jan;11(1):45-50. [PubMed:9034165 ]
  21. Gunstone, Frank D., John L. Harwood, and Albert J. Dijkstra (2007). The lipid handbook with CD-ROM. CRC Press.
  22. Linda T. Welson (2006). Triglycerides and Cholesterol Research. Nova Science Publishers Inc..

Only showing the first 10 proteins. There are 39 proteins in total.

Enzymes

General function:
Involved in catalytic activity
Specific function:
Not Available
Gene Name:
PNLIP
Uniprot ID:
P16233
Molecular weight:
51156.48
General function:
Involved in catalytic activity
Specific function:
Hepatic lipase has the capacity to catalyze hydrolysis of phospholipids, mono-, di-, and triglycerides, and acyl-CoA thioesters. It is an important enzyme in HDL metabolism. Hepatic lipase binds heparin.
Gene Name:
LIPC
Uniprot ID:
P11150
Molecular weight:
55914.1
General function:
Involved in lipid metabolic process
Specific function:
Crucial for the intracellular hydrolysis of cholesteryl esters and triglycerides that have been internalized via receptor-mediated endocytosis of lipoprotein particles. Important in mediating the effect of LDL (low density lipoprotein) uptake on suppression of hydroxymethylglutaryl-CoA reductase and activation of endogenous cellular cholesteryl ester formation.
Gene Name:
LIPA
Uniprot ID:
P38571
Molecular weight:
45418.71
General function:
Involved in catalytic activity
Specific function:
May function as inhibitor of dietary triglyceride digestion. Lacks detectable lipase activity towards triglycerides, diglycerides, phosphatidylcholine, galactolipids or cholesterol esters (in vitro) (By similarity).
Gene Name:
PNLIPRP1
Uniprot ID:
P54315
Molecular weight:
Not Available
General function:
Involved in metabolic process
Specific function:
Multifunctional enzyme which has both triacylglycerol lipase and acylglycerol O-acyltransferase activities.
Gene Name:
PNPLA3
Uniprot ID:
Q9NST1
Molecular weight:
52864.64
General function:
Involved in lipid metabolic process
Specific function:
Not Available
Gene Name:
LIPF
Uniprot ID:
P07098
Molecular weight:
45237.375
General function:
Involved in catalytic activity
Specific function:
Has phospholipase and triglyceride lipase activities. Hydrolyzes high density lipoproteins (HDL) more efficiently than other lipoproteins. Binds heparin.
Gene Name:
LIPG
Uniprot ID:
Q9Y5X9
Molecular weight:
56794.275
General function:
Lipid transport and metabolism
Specific function:
Catalyzes fat and vitamin absorption. Acts in concert with pancreatic lipase and colipase for the complete digestion of dietary triglycerides.
Gene Name:
CEL
Uniprot ID:
P19835
Molecular weight:
79666.385
General function:
Involved in diacylglycerol O-acyltransferase activity
Specific function:
Catalyzes the terminal and only committed step in triacylglycerol synthesis by using diacylglycerol and fatty acyl CoA as substrates. In contrast to DGAT2 it is not essential for survival. May be involved in VLDL (very low density lipoprotein) assembly. In liver, plays a role in esterifying exogenous fatty acids to glycerol. Functions as the major acyl-CoA retinol acyltransferase (ARAT) in the skin, where it acts to maintain retinoid homeostasis and prevent retinoid toxicity leading to skin and hair disorders.
Gene Name:
DGAT1
Uniprot ID:
O75907
Molecular weight:
55277.735
General function:
Involved in catalytic activity
Specific function:
Lipase with broad substrate specificity. Can hydrolyze both phospholipids and galactolipids. Acts preferentially on monoglycerides, phospholipids and galactolipids. Contributes to milk fat hydrolysis.
Gene Name:
PNLIPRP2
Uniprot ID:
P54317
Molecular weight:
52077.475

Transporters

General function:
Involved in lipid transporter activity
Specific function:
Catalyzes the transport of triglyceride, cholesteryl ester, and phospholipid between phospholipid surfaces. Required for the secretion of plasma lipoproteins that contain apolipoprotein B
Gene Name:
MTTP
Uniprot ID:
P55157
Molecular weight:
99350.3
References
  1. Sharp D, Ricci B, Kienzle B, Lin MC, Wetterau JR: Human microsomal triglyceride transfer protein large subunit gene structure. Biochemistry. 1994 Aug 9;33(31):9057-61. [PubMed:7545943 ]
General function:
Involved in lipid binding
Specific function:
Involved in the transfer of insoluble cholesteryl esters in the reverse transport of cholesterol
Gene Name:
CETP
Uniprot ID:
P11597
Molecular weight:
54755.7
References
  1. Swenson TL, Brocia RW, Tall AR: Plasma cholesteryl ester transfer protein has binding sites for neutral lipids and phospholipids. J Biol Chem. 1988 Apr 15;263(11):5150-7. [PubMed:2833496 ]
  2. Sarich TC, Connelly MA, Schranz DB, Ghosh A, Manitpisitkul P, Leary ET, Rothenberg P, Demarest KT, Damiano BP: Phase 0 study of the inhibition of cholesteryl ester transfer protein activity by JNJ-28545595 in plasma from normolipidemic and dyslipidemic humans. Int J Clin Pharmacol Ther. 2012 Aug;50(8):584-94. doi: 10.5414/CP201627. [PubMed:22578199 ]
General function:
Not Available
Specific function:
Inhibits lipoprotein lipase and hepatic lipase and decreases the uptake of lymph chylomicrons by hepatic cells. This suggests that it delays the catabolism of triglyceride-rich particles
Gene Name:
APOC3
Uniprot ID:
P02656
Molecular weight:
10852.0
References
  1. Hidaka H, Takiwaki M, Yamashita M, Kawasaki K, Sugano M, Honda T: Consumption of nonfat milk results in a less atherogenic lipoprotein profile: a pilot study. Ann Nutr Metab. 2012;61(2):111-6. [PubMed:22907079 ]
General function:
Replication, recombination and repair
Specific function:
May have a role in chylomicrons and VLDL secretion and catabolism. Required for efficient activation of lipoprotein lipase by ApoC-II; potent activator of LCAT. Apoa-IV is a major component of HDL and chylomicrons
Gene Name:
APOA4
Uniprot ID:
P06727
Molecular weight:
45400.0
References
  1. Kohan AB, Wang F, Li X, Bradshaw S, Yang Q, Caldwell JL, Bullock TM, Tso P: Apolipoprotein A-IV regulates chylomicron metabolism-mechanism and function. Am J Physiol Gastrointest Liver Physiol. 2012 Mar 15;302(6):G628-36. doi: 10.1152/ajpgi.00225.2011. Epub 2011 Dec 29. [PubMed:22207575 ]
General function:
Not Available
Specific function:
Seems to have numerous potential physiological functions. Binds to collagen, thrombospondin, anionic phospholipids and oxidized LDL. May function as a cell adhesion molecule. Directly mediates cytoadherence of Plasmodium falciparum parasitized erythrocytes. Binds long chain fatty acids and may function in the transport and/or as a regulator of fatty acid transport
Gene Name:
CD36
Uniprot ID:
P16671
Molecular weight:
53054.0
References
  1. Feingold KR, Shigenaga JK, Kazemi MR, McDonald CM, Patzek SM, Cross AS, Moser A, Grunfeld C: Mechanisms of triglyceride accumulation in activated macrophages. J Leukoc Biol. 2012 Oct;92(4):829-39. doi: 10.1189/jlb.1111537. Epub 2012 Jun 29. [PubMed:22753953 ]
General function:
Lipid transport and metabolism
Specific function:
Involved in translocation of long-chain fatty acids (LFCA) across the plasma membrane. The LFCA import appears to be hormone-regulated in a tissue-specific manner. In adipocytes, but not myocytes, insulin induces a rapid translocation of FATP1 from intracellular compartments to the plasma membrane, paralleled by increased LFCA uptake. May act directly as a bona fide transporter, or alternatively, in a cytoplasmic or membrane- associated multimeric protein complex to trap and draw fatty acids towards accumulation. Plays a pivotal role in regulating available LFCA substrates from exogenous sources in tissues undergoing high levels of beta-oxidation or triglyceride synthesis. May be involved in regulation of cholesterol metabolism. Has acyl-CoA ligase activity for long-chain and very-long-chain fatty acids
Gene Name:
SLC27A1
Uniprot ID:
Q6PCB7
Molecular weight:
71107.5
References
  1. Hatch GM, Smith AJ, Xu FY, Hall AM, Bernlohr DA: FATP1 channels exogenous FA into 1,2,3-triacyl-sn-glycerol and down-regulates sphingomyelin and cholesterol metabolism in growing 293 cells. J Lipid Res. 2002 Sep;43(9):1380-9. [PubMed:12235169 ]

Only showing the first 10 proteins. There are 39 proteins in total.