| Record Information |
|---|
| Version | 5.0 |
|---|
| Status | Expected but not Quantified |
|---|
| Creation Date | 2012-09-11 20:41:49 UTC |
|---|
| Update Date | 2022-03-07 02:54:36 UTC |
|---|
| HMDB ID | HMDB0035688 |
|---|
| Secondary Accession Numbers | |
|---|
| Metabolite Identification |
|---|
| Common Name | Valencene |
|---|
| Description | Valencene, also known as oxo-tremorine, belongs to the class of organic compounds known as eremophilane, 8,9-secoeremophilane and furoeremophilane sesquiterpenoids. These are sesquiterpenoids with a structure based either on the eremophilane skeleton, its 8,9-seco derivative, or the furoeremophilane skeleton. Eremophilanes have been shown to be derived from eudesmanes by migration of the methyl group at C-10 to C-5. Based on a literature review a significant number of articles have been published on Valencene. |
|---|
| Structure | CC1CCC=C2CCC(CC12C)C(C)=C InChI=1S/C15H24/c1-11(2)13-8-9-14-7-5-6-12(3)15(14,4)10-13/h7,12-13H,1,5-6,8-10H2,2-4H3 |
|---|
| Synonyms | | Value | Source |
|---|
| 1-(4-(1-Pyrrolidinyl)-2-butynyl)-2-pyrrolidinone | HMDB | | 1-(4-(Pyrrolidin-1-yl)but-2-ynyl)pyrrolidin-2-one | HMDB | | 1-[4-(1-Pyrrolidinyl)-2-butynyl]-2-pyrrolidinone | HMDB | | 2'-Oxopyrrolidino-1-pyrrolidino-4-butyne | HMDB | | 4beta H,5alpha -Eremophila-1(10),11-diene | HMDB | | oxo-Tremorine | HMDB | | Oxotremorin | HMDB | | Oxotremorine | HMDB | | Oxotremorine sesquifumarate salt | HMDB | | Oxytremorine | HMDB | | Valencene 85 | HMDB |
|
|---|
| Chemical Formula | C15H24 |
|---|
| Average Molecular Weight | 204.3511 |
|---|
| Monoisotopic Molecular Weight | 204.187800768 |
|---|
| IUPAC Name | 4a,5-dimethyl-3-(prop-1-en-2-yl)-1,2,3,4,4a,5,6,7-octahydronaphthalene |
|---|
| Traditional Name | valencene |
|---|
| CAS Registry Number | 4630-07-3 |
|---|
| SMILES | CC1CCC=C2CCC(CC12C)C(C)=C |
|---|
| InChI Identifier | InChI=1S/C15H24/c1-11(2)13-8-9-14-7-5-6-12(3)15(14,4)10-13/h7,12-13H,1,5-6,8-10H2,2-4H3 |
|---|
| InChI Key | QEBNYNLSCGVZOH-UHFFFAOYSA-N |
|---|
| Chemical Taxonomy |
|---|
| Description | Belongs to the class of organic compounds known as eremophilane, 8,9-secoeremophilane and furoeremophilane sesquiterpenoids. These are sesquiterpenoids with a structure based either on the eremophilane skeleton, its 8,9-seco derivative, or the furoeremophilane skeleton. Eremophilanes have been shown to be derived from eudesmanes by migration of the methyl group at C-10 to C-5. |
|---|
| Kingdom | Organic compounds |
|---|
| Super Class | Lipids and lipid-like molecules |
|---|
| Class | Prenol lipids |
|---|
| Sub Class | Sesquiterpenoids |
|---|
| Direct Parent | Eremophilane, 8,9-secoeremophilane and furoeremophilane sesquiterpenoids |
|---|
| Alternative Parents | |
|---|
| Substituents | - Eremophilane sesquiterpenoid
- Branched unsaturated hydrocarbon
- Polycyclic hydrocarbon
- Cyclic olefin
- Unsaturated aliphatic hydrocarbon
- Unsaturated hydrocarbon
- Olefin
- Hydrocarbon
- Aliphatic homopolycyclic compound
|
|---|
| Molecular Framework | Aliphatic homopolycyclic compounds |
|---|
| External Descriptors | |
|---|
| Ontology |
|---|
| Physiological effect | Not Available |
|---|
| Disposition | |
|---|
| Process | Not Available |
|---|
| Role | Not Available |
|---|
| Physical Properties |
|---|
| State | Not Available |
|---|
| Experimental Molecular Properties | |
|---|
| Experimental Chromatographic Properties | Not Available |
|---|
| Predicted Molecular Properties | |
|---|
| Predicted Chromatographic Properties | Predicted Collision Cross SectionsPredicted Retention Times Underivatized| Chromatographic Method | Retention Time | Reference |
|---|
| Measured using a Waters Acquity ultraperformance liquid chromatography (UPLC) ethylene-bridged hybrid (BEH) C18 column (100 mm × 2.1 mm; 1.7 μmparticle diameter). Predicted by Afia on May 17, 2022. Predicted by Afia on May 17, 2022. | 8.04 minutes | 32390414 | | Predicted by Siyang on May 30, 2022 | 22.1954 minutes | 33406817 | | Predicted by Siyang using ReTip algorithm on June 8, 2022 | 1.79 minutes | 32390414 | | Fem_Long = Waters ACQUITY UPLC HSS T3 C18 with Water:MeOH and 0.1% Formic Acid | 2686.8 seconds | 40023050 | | Fem_Lipids = Ascentis Express C18 with (60:40 water:ACN):(90:10 IPA:ACN) and 10mM NH4COOH + 0.1% Formic Acid | 814.9 seconds | 40023050 | | Life_Old = Waters ACQUITY UPLC BEH C18 with Water:(20:80 acetone:ACN) and 0.1% Formic Acid | 299.2 seconds | 40023050 | | Life_New = RP Waters ACQUITY UPLC HSS T3 C18 with Water:(30:70 MeOH:ACN) and 0.1% Formic Acid | 483.8 seconds | 40023050 | | RIKEN = Waters ACQUITY UPLC BEH C18 with Water:ACN and 0.1% Formic Acid | 457.4 seconds | 40023050 | | Eawag_XBridgeC18 = XBridge C18 3.5u 2.1x50 mm with Water:MeOH and 0.1% Formic Acid | 885.3 seconds | 40023050 | | BfG_NTS_RP1 =Agilent Zorbax Eclipse Plus C18 (2.1 mm x 150 mm, 3.5 um) with Water:ACN and 0.1% Formic Acid | 976.1 seconds | 40023050 | | HILIC_BDD_2 = Merck SeQuant ZIC-HILIC with ACN(0.1% formic acid):water(16 mM ammonium formate) | 183.8 seconds | 40023050 | | UniToyama_Atlantis = RP Waters Atlantis T3 (2.1 x 150 mm, 5 um) with ACN:Water and 0.1% Formic Acid | 1830.9 seconds | 40023050 | | BDD_C18 = Hypersil Gold 1.9µm C18 with Water:ACN and 0.1% Formic Acid | 595.7 seconds | 40023050 | | UFZ_Phenomenex = Kinetex Core-Shell C18 2.6 um, 3.0 x 100 mm, Phenomenex with Water:MeOH and 0.1% Formic Acid | 1776.4 seconds | 40023050 | | SNU_RIKEN_POS = Waters ACQUITY UPLC BEH C18 with Water:ACN and 0.1% Formic Acid | 679.0 seconds | 40023050 | | RPMMFDA = Waters ACQUITY UPLC BEH C18 with Water:ACN and 0.1% Formic Acid | 535.8 seconds | 40023050 | | MTBLS87 = Merck SeQuant ZIC-pHILIC column with ACN:Water and :ammonium carbonate | 604.8 seconds | 40023050 | | KI_GIAR_zic_HILIC_pH2_7 = Merck SeQuant ZIC-HILIC with ACN:Water and 0.1% FA | 768.7 seconds | 40023050 | | Meister zic-pHILIC pH9.3 = Merck SeQuant ZIC-pHILIC column with ACN:Water 5mM NH4Ac pH9.3 and 5mM ammonium acetate in water | 8.9 seconds | 40023050 |
Predicted Kovats Retention IndicesUnderivatized |
|---|
| GC-MS Spectra| Spectrum Type | Description | Splash Key | Deposition Date | Source | View |
|---|
| Experimental GC-MS | GC-MS Spectrum - Valencene GC-EI-Q (Non-derivatized) | splash10-06r6-6900000000-6056307d54773f6a82a7 | 2020-07-08 | HMDB team, MONA, MassBank | View Spectrum | | Predicted GC-MS | Predicted GC-MS Spectrum - Valencene GC-MS (Non-derivatized) - 70eV, Positive | splash10-000i-1900000000-924c0ed0f560e2343f55 | 2017-09-01 | Wishart Lab | View Spectrum | | Predicted GC-MS | Predicted GC-MS Spectrum - Valencene GC-MS (Non-derivatized) - 70eV, Positive | Not Available | 2021-10-12 | Wishart Lab | View Spectrum |
MS/MS Spectra| Spectrum Type | Description | Splash Key | Deposition Date | Source | View |
|---|
| Predicted LC-MS/MS | Predicted LC-MS/MS Spectrum - Valencene 10V, Positive-QTOF | splash10-0a4i-1490000000-64b1f2c7f108e8d251ee | 2016-08-02 | Wishart Lab | View Spectrum | | Predicted LC-MS/MS | Predicted LC-MS/MS Spectrum - Valencene 20V, Positive-QTOF | splash10-0cdr-3920000000-6ec0f8bff5e08c3188eb | 2016-08-02 | Wishart Lab | View Spectrum | | Predicted LC-MS/MS | Predicted LC-MS/MS Spectrum - Valencene 40V, Positive-QTOF | splash10-000i-6900000000-de9b8430cbefd1ff8a23 | 2016-08-02 | Wishart Lab | View Spectrum | | Predicted LC-MS/MS | Predicted LC-MS/MS Spectrum - Valencene 10V, Negative-QTOF | splash10-0udi-0090000000-dceadc1eb356d16afae6 | 2016-08-03 | Wishart Lab | View Spectrum | | Predicted LC-MS/MS | Predicted LC-MS/MS Spectrum - Valencene 20V, Negative-QTOF | splash10-0udi-0190000000-2e9a22282b05ad914329 | 2016-08-03 | Wishart Lab | View Spectrum | | Predicted LC-MS/MS | Predicted LC-MS/MS Spectrum - Valencene 40V, Negative-QTOF | splash10-000i-1910000000-25622133ba47e98f5e5d | 2016-08-03 | Wishart Lab | View Spectrum | | Predicted LC-MS/MS | Predicted LC-MS/MS Spectrum - Valencene 10V, Positive-QTOF | splash10-0bt9-0970000000-3dce51d91747df18039b | 2021-09-24 | Wishart Lab | View Spectrum | | Predicted LC-MS/MS | Predicted LC-MS/MS Spectrum - Valencene 20V, Positive-QTOF | splash10-0a4i-6920000000-7d73224ac3ffa81a2d3c | 2021-09-24 | Wishart Lab | View Spectrum | | Predicted LC-MS/MS | Predicted LC-MS/MS Spectrum - Valencene 40V, Positive-QTOF | splash10-0006-9200000000-2cd94e921e3ed07cd790 | 2021-09-24 | Wishart Lab | View Spectrum | | Predicted LC-MS/MS | Predicted LC-MS/MS Spectrum - Valencene 10V, Negative-QTOF | splash10-0udi-0090000000-7ccf03fa1149a1e9f55f | 2021-09-24 | Wishart Lab | View Spectrum | | Predicted LC-MS/MS | Predicted LC-MS/MS Spectrum - Valencene 20V, Negative-QTOF | splash10-0udi-0090000000-7ccf03fa1149a1e9f55f | 2021-09-24 | Wishart Lab | View Spectrum | | Predicted LC-MS/MS | Predicted LC-MS/MS Spectrum - Valencene 40V, Negative-QTOF | splash10-0udi-0290000000-6c318cb263f435b16ddb | 2021-09-24 | Wishart Lab | View Spectrum |
|
|---|
| General References | - Miwa H, Nishi K, Fuwa T, Mizuno Y: Differential expression of c-fos following administration of two tremorgenic agents: harmaline and oxotremorine. Neuroreport. 2000 Aug 3;11(11):2385-90. [PubMed:10943690 ]
- Kuroiwa M, Hamada M, Hieda E, Shuto T, Sotogaku N, Flajolet M, Snyder GL, Hendrick JP, Fienberg A, Nishi A: Muscarinic receptors acting at pre- and post-synaptic sites differentially regulate dopamine/DARPP-32 signaling in striatonigral and striatopallidal neurons. Neuropharmacology. 2012 Dec;63(7):1248-57. doi: 10.1016/j.neuropharm.2012.07.046. Epub 2012 Aug 7. [PubMed:22971543 ]
- Westermann KH, Oelszner W, Funk KF, Staib AH: Effects of oxotremorine after nigrostriatal lesions in rats. Pol J Pharmacol Pharm. 1975 Jul-Aug;27(4):413-7. [PubMed:1166022 ]
- Pavesi E, Gooch A, Lee E, Fletcher ML: Cholinergic modulation during acquisition of olfactory fear conditioning alters learning and stimulus generalization in mice. Learn Mem. 2012 Dec 14;20(1):6-10. doi: 10.1101/lm.028324.112. [PubMed:23242418 ]
- Palomares-Rius JE, Jones JT, Cock PJ, Castillo P, Blok VC: Activation of hatching in diapaused and quiescent Globodera pallida. Parasitology. 2013 Apr;140(4):445-54. doi: 10.1017/S0031182012001874. Epub 2012 Dec 20. [PubMed:23253858 ]
- Gholami M, Saboory E, Zare S, Roshan-Milani S, Hajizadeh-Moghaddam A: The effect of dorsal hippocampal administration of nicotinic and muscarinic cholinergic ligands on pentylenetetrazol-induced generalized seizures in rats. Epilepsy Behav. 2012 Oct;25(2):244-9. doi: 10.1016/j.yebeh.2012.07.004. Epub 2012 Oct 2. [PubMed:23037131 ]
- Daigle TL, Caron MG: Elimination of GRK2 from cholinergic neurons reduces behavioral sensitivity to muscarinic receptor activation. J Neurosci. 2012 Aug 15;32(33):11461-6. doi: 10.1523/JNEUROSCI.2234-12.2012. [PubMed:22895728 ]
- Simons K, Toomre D: Lipid rafts and signal transduction. Nat Rev Mol Cell Biol. 2000 Oct;1(1):31-9. [PubMed:11413487 ]
- Watson AD: Thematic review series: systems biology approaches to metabolic and cardiovascular disorders. Lipidomics: a global approach to lipid analysis in biological systems. J Lipid Res. 2006 Oct;47(10):2101-11. Epub 2006 Aug 10. [PubMed:16902246 ]
- Sethi JK, Vidal-Puig AJ: Thematic review series: adipocyte biology. Adipose tissue function and plasticity orchestrate nutritional adaptation. J Lipid Res. 2007 Jun;48(6):1253-62. Epub 2007 Mar 20. [PubMed:17374880 ]
- Lingwood D, Simons K: Lipid rafts as a membrane-organizing principle. Science. 2010 Jan 1;327(5961):46-50. doi: 10.1126/science.1174621. [PubMed:20044567 ]
- (). Yannai, Shmuel. (2004) Dictionary of food compounds with CD-ROM: Additives, flavors, and ingredients. Boca Raton: Chapman & Hall/CRC.. .
- Gunstone, Frank D., John L. Harwood, and Albert J. Dijkstra (2007). The lipid handbook with CD-ROM. CRC Press.
|
|---|