You are using an unsupported browser. Please upgrade your browser to a newer version to get the best experience on Human Metabolome Database.
Record Information
StatusDetected and Quantified
Creation Date2006-02-21 07:56:51 UTC
Update Date2019-07-23 05:45:07 UTC
Secondary Accession Numbers
  • HMDB01854
Metabolite Identification
Common NameTellurium
DescriptionTellurium is a trace element that belongs chemically to the VIa group in the periodic chemical table that has the symbol Te and atomic number 52. Tellurium is a brittle silver-white metalloid which looks like tin, and is related to selenium and sulfur. Physiologically, it exists as an ion in the body. The ingestion of tellurium compounds has been known to be associated with a garlic-like odor of the breath, thus indicating that tellurium is absorbed by the gut, metabolized by tissues, and excreted through routes other than the feces. Little is known about the Te biological activity, particularly with respect to potential chemical interactions with Se-containing components in the organism. Tellurium is a non-competitive inhibitor of squalene epoxidase and has been associated with neuropathy. Late fetal stages of prenatal development appeared uniquely sensitive to organic tellurium exposure. All tellurium compounds are highly toxic. (PMID: 17873396 , 15596254 , 10048717 ).
Aurum paradoxumHMDB
Tellurium atomHMDB
Tellurium elementHMDB
Chemical FormulaTe
Average Molecular Weight127.6
Monoisotopic Molecular Weight129.906222753
IUPAC Nameλ⁴-tellanetetraylium
Traditional Nameλ⁴-tellanetetraylium
CAS Registry Number13494-80-9
InChI Identifier
Chemical Taxonomy
Description belongs to the class of inorganic compounds known as homogeneous metalloid compounds. These are inorganic compounds containing only metal atoms,with the largest atom being a metalloid atom.
KingdomInorganic compounds
Super ClassHomogeneous metal compounds
ClassHomogeneous metalloid compounds
Sub ClassNot Available
Direct ParentHomogeneous metalloid compounds
Alternative ParentsNot Available
  • Homogeneous metalloid
Molecular FrameworkNot Available
External DescriptorsNot Available

Route of exposure:


Biological location:


Environmental role:

Biological role:

Physical Properties
Experimental Properties
Melting Point449.5 °CNot Available
Boiling PointNot AvailableNot Available
Water SolubilityNot AvailableNot Available
LogPNot AvailableNot Available
Predicted Properties
Physiological Charge4ChemAxon
Hydrogen Acceptor Count0ChemAxon
Hydrogen Donor Count0ChemAxon
Polar Surface Area0 ŲChemAxon
Rotatable Bond Count0ChemAxon
Refractivity0 m³·mol⁻¹ChemAxon
Polarizability1.78 ųChemAxon
Number of Rings0ChemAxon
Rule of FiveYesChemAxon
Ghose FilterYesChemAxon
Veber's RuleYesChemAxon
MDDR-like RuleYesChemAxon
Not Available
Biological Properties
Cellular LocationsNot Available
Biospecimen Locations
  • Blood
  • Saliva
  • Urine
Tissue Locations
  • Bile
  • Urine
Normal Concentrations
BloodExpected but not Quantified Not AvailableNot Available
    SalivaDetected and Quantified0.021 +/- 0.02 uMAdult (>18 years old)BothNormal
      • Zerihun T. Dame, ...
    UrineDetected and Quantified0.494 umol/mmol creatinineAdult (>18 years old)BothNormal
      Abnormal Concentrations
      Not Available
      Associated Disorders and Diseases
      Disease ReferencesNone
      Associated OMIM IDsNone
      DrugBank IDNot Available
      Phenol Explorer Compound IDNot Available
      FoodDB IDFDB003718
      KNApSAcK IDNot Available
      Chemspider ID103035
      KEGG Compound IDNot Available
      BioCyc IDNot Available
      BiGG IDNot Available
      Wikipedia LinkTellurium
      METLIN IDNot Available
      PubChem Compound115151
      PDB IDNot Available
      ChEBI ID30452
      Synthesis ReferenceDetty, Michael R.; Luss, Henry R.; McKelvey, John M.; Geer, Susan M. 12-Te-5 pertelluranes from 1,2-oxatellurolyl-1-ium halides. Synthesis, structure, and reactivity. The quest for delocalization in 10-Te-3 telluranes and 12-Te-5 pertelluranes of thiathiophthene structure. J. Org. Chem. 1986(51) p.1692-1700
      Material Safety Data Sheet (MSDS)Download (PDF)
      General References
      1. Wagner-Recio M, Toews AD, Morell P: Tellurium blocks cholesterol synthesis by inhibiting squalene metabolism: preferential vulnerability to this metabolic block leads to peripheral nervous system demyelination. J Neurochem. 1991 Dec;57(6):1891-901. [PubMed:1940905 ]
      2. Eybl V, Kotyzova D, Sykora J, Topolcan O, Pikner R, Mihaljevic M, Brtko J, Glattre E: Effects of selenium and tellurium on the activity of selenoenzymes glutathione peroxidase and type I iodothyronine deiodinase, trace element thyroid level, and thyroid hormone status in rats. Biol Trace Elem Res. 2007 Summer;117(1-3):105-14. [PubMed:17873396 ]
      3. Stangherlin EC, Favero AM, Zeni G, Rocha JB, Nogueira CW: Teratogenic vulnerability of Wistar rats to diphenyl ditelluride. Toxicology. 2005 Feb 14;207(2):231-9. [PubMed:15596254 ]
      4. Gajkowska B, Smialek M, Ostrowski RP, Piotrowski P, Frontczak-Baniewicz M: The experimental squalene encephaloneuropathy in the rat. Exp Toxicol Pathol. 1999 Jan;51(1):75-80. [PubMed:10048717 ]