Hmdb loader
Record Information
Version5.0
StatusDetected and Quantified
Creation Date2009-03-17 15:16:48 UTC
Update Date2023-07-07 20:53:58 UTC
HMDB IDHMDB0011756
Secondary Accession Numbers
  • HMDB11756
Metabolite Identification
Common NameN-Acetyl-Leu
DescriptionN-Acetyl-L-leucine or N-Acetylleucine, belongs to the class of organic compounds known as N-acyl-alpha amino acids. N-acyl-alpha amino acids are compounds containing an alpha amino acid which bears an acyl group at its terminal nitrogen atom. N-Acetylleucine can also be classified as an alpha amino acid or a derivatized alpha amino acid. Technically, N-Acetylleucine is a biologically available N-terminal capped form of the proteinogenic alpha amino acid L-lecuine. N-acetyl amino acids can be produced either via direct synthesis of specific N-acetyltransferases or via the proteolytic degradation of N-acetylated proteins by specific hydrolases. N-terminal acetylation of proteins is a widespread and highly conserved process in eukaryotes that is involved in protection and stability of proteins (PMID: 16465618 ). About 85% of all human proteins and 68% of all yeast proteins are acetylated at their N-terminus (PMID: 21750686 ). Several proteins from prokaryotes and archaea are also modified by N-terminal acetylation. The majority of eukaryotic N-terminal-acetylation reactions occur through N-acetyltransferase enzymes or NAT’s (PMID: 30054468 ). These enzymes consist of three main oligomeric complexes NatA, NatB, and NatC, which are composed of at least a unique catalytic subunit and one unique ribosomal anchor. The substrate specificities of different NAT enzymes are mainly determined by the identities of the first two N-terminal residues of the target protein. The human NatA complex co-translationally acetylates N-termini that bear a small amino acid (A, S, T, C, and occasionally V and G) (PMID: 30054468 ). NatA also exists in a monomeric state and can post-translationally acetylate acidic N-termini residues (D-, E-). NatB and NatC acetylate N-terminal methionine with further specificity determined by the identity of the second amino acid. N-acetylated amino acids, such as N-acetylleucine can be released by an N-acylpeptide hydrolase from peptides generated by proteolytic degradation (PMID: 16465618 ). In addition to the NAT enzymes and protein-based acetylation, N-acetylation of free leucine can also occur. In particular, N-Acetylleucine can be biosynthesized from L-leucine and acetyl-CoA by the enzyme leucine N-acetyltransferase (EC 2.3.1.66). Excessive amounts N-acetyl amino acids including N-acetylleucine (as well as N-acetylglycine, N-acetylserine, N-acetylglutamine, N-acetylglutamate, N-acetylalanine, N-acetylmethionine and smaller amounts of N-acetylthreonine, N-acetylisoleucine, and N-acetylvaline) can be detected in the urine with individuals with acylase I deficiency, a genetic disorder (PMID: 16465618 ). Aminoacylase I is a soluble homodimeric zinc binding enzyme that catalyzes the formation of free aliphatic amino acids from N-acetylated precursors. In humans, Aminoacylase I is encoded by the aminoacylase 1 gene (ACY1) on chromosome 3p21 that consists of 15 exons (OMIM 609924 ). Individuals with aminoacylase I deficiency will experience convulsions, hearing loss and difficulty feeding (PMID: 16465618 ). ACY1 can also catalyze the reverse reaction, the synthesis of acetylated amino acids. Many N-acetylamino acids, including N-acetylleucine are classified as uremic toxins if present in high abundance in the serum or plasma (PMID: 26317986 ; PMID: 20613759 ). Uremic toxins are a diverse group of endogenously produced molecules that, if not properly cleared or eliminated by the kidneys, can cause kidney damage, cardiovascular disease and neurological deficits (PMID: 18287557 ).
Structure
Data?1676999857
Synonyms
ValueSource
AcetylleucineChEBI
N-Acetyl-leuChEBI
LasdolMeSH
TanganilMeSH
Acetyl-DL-leucineMeSH
Acetyl-L-leucineHMDB
N-Acetyl-L-leucinHMDB
N-Acetyl-L-leucineHMDB
N-AcetylleucineChEBI
Chemical FormulaC8H15NO3
Average Molecular Weight173.2096
Monoisotopic Molecular Weight173.105193351
IUPAC Name(2S)-2-acetamido-4-methylpentanoic acid
Traditional NameN-acetyl-leu
CAS Registry Number1188-21-2
SMILES
CC(C)C[C@H](NC(C)=O)C(O)=O
InChI Identifier
InChI=1S/C8H15NO3/c1-5(2)4-7(8(11)12)9-6(3)10/h5,7H,4H2,1-3H3,(H,9,10)(H,11,12)/t7-/m0/s1
InChI KeyWXNXCEHXYPACJF-ZETCQYMHSA-N
Chemical Taxonomy
Description Belongs to the class of organic compounds known as leucine and derivatives. Leucine and derivatives are compounds containing leucine or a derivative thereof resulting from reaction of leucine at the amino group or the carboxy group, or from the replacement of any hydrogen of glycine by a heteroatom.
KingdomOrganic compounds
Super ClassOrganic acids and derivatives
ClassCarboxylic acids and derivatives
Sub ClassAmino acids, peptides, and analogues
Direct ParentLeucine and derivatives
Alternative Parents
Substituents
  • Leucine or derivatives
  • N-acyl-alpha-amino acid
  • N-acyl-alpha amino acid or derivatives
  • Branched fatty acid
  • Methyl-branched fatty acid
  • Fatty acid
  • Fatty acyl
  • Carboximidic acid
  • Carboximidic acid derivative
  • Carboxylic acid
  • Monocarboxylic acid or derivatives
  • Propargyl-type 1,3-dipolar organic compound
  • Organic 1,3-dipolar compound
  • Organopnictogen compound
  • Organic oxygen compound
  • Organonitrogen compound
  • Organooxygen compound
  • Organic oxide
  • Organic nitrogen compound
  • Carbonyl group
  • Hydrocarbon derivative
  • Aliphatic acyclic compound
Molecular FrameworkAliphatic acyclic compounds
External Descriptors
Ontology
Physiological effect
Disposition
ProcessNot Available
Role
Physical Properties
StateSolid
Experimental Molecular Properties
PropertyValueReference
Melting PointNot AvailableNot Available
Boiling PointNot AvailableNot Available
Water Solubility8.1 mg/mL at 25 °CNot Available
LogP0.79MEYLAN,WM & HOWARD,PH (1995)
Experimental Chromatographic Properties

Experimental Collision Cross Sections

Adduct TypeData SourceCCS Value (Å2)Reference
[M-H]-Not Available140.9http://allccs.zhulab.cn/database/detail?ID=AllCCS00002071
Predicted Molecular Properties
PropertyValueSource
Water Solubility10.9 g/LALOGPS
logP0.78ALOGPS
logP0.49ChemAxon
logS-1.2ALOGPS
pKa (Strongest Acidic)4.2ChemAxon
pKa (Strongest Basic)-1.2ChemAxon
Physiological Charge-1ChemAxon
Hydrogen Acceptor Count3ChemAxon
Hydrogen Donor Count2ChemAxon
Polar Surface Area66.4 ŲChemAxon
Rotatable Bond Count4ChemAxon
Refractivity43.61 m³·mol⁻¹ChemAxon
Polarizability18.09 ųChemAxon
Number of Rings0ChemAxon
BioavailabilityYesChemAxon
Rule of FiveYesChemAxon
Ghose FilterYesChemAxon
Veber's RuleNoChemAxon
MDDR-like RuleNoChemAxon
Predicted Chromatographic Properties

Predicted Collision Cross Sections

PredictorAdduct TypeCCS Value (Å2)Reference
DarkChem[M+H]+142.35731661259
DarkChem[M-H]-139.91331661259
DeepCCS[M+H]+139.08230932474
DeepCCS[M-H]-135.25530932474
DeepCCS[M-2H]-172.72830932474
DeepCCS[M+Na]+148.26630932474
AllCCS[M+H]+140.732859911
AllCCS[M+H-H2O]+136.932859911
AllCCS[M+NH4]+144.232859911
AllCCS[M+Na]+145.232859911
AllCCS[M-H]-138.632859911
AllCCS[M+Na-2H]-140.432859911
AllCCS[M+HCOO]-142.432859911

Predicted Retention Times

Underivatized

Chromatographic MethodRetention TimeReference
Measured using a Waters Acquity ultraperformance liquid chromatography (UPLC) ethylene-bridged hybrid (BEH) C18 column (100 mm × 2.1 mm; 1.7 μmparticle diameter). Predicted by Afia on May 17, 2022. Predicted by Afia on May 17, 2022.3.09 minutes32390414
Predicted by Siyang on May 30, 202210.9136 minutes33406817
Predicted by Siyang using ReTip algorithm on June 8, 20222.4 minutes32390414
AjsUoB = Accucore 150 Amide HILIC with 10mM Ammonium Formate, 0.1% Formic Acid68.9 seconds40023050
Fem_Long = Waters ACQUITY UPLC HSS T3 C18 with Water:MeOH and 0.1% Formic Acid1473.2 seconds40023050
Fem_Lipids = Ascentis Express C18 with (60:40 water:ACN):(90:10 IPA:ACN) and 10mM NH4COOH + 0.1% Formic Acid302.3 seconds40023050
Life_Old = Waters ACQUITY UPLC BEH C18 with Water:(20:80 acetone:ACN) and 0.1% Formic Acid103.1 seconds40023050
Life_New = RP Waters ACQUITY UPLC HSS T3 C18 with Water:(30:70 MeOH:ACN) and 0.1% Formic Acid172.8 seconds40023050
RIKEN = Waters ACQUITY UPLC BEH C18 with Water:ACN and 0.1% Formic Acid74.0 seconds40023050
Eawag_XBridgeC18 = XBridge C18 3.5u 2.1x50 mm with Water:MeOH and 0.1% Formic Acid359.2 seconds40023050
BfG_NTS_RP1 =Agilent Zorbax Eclipse Plus C18 (2.1 mm x 150 mm, 3.5 um) with Water:ACN and 0.1% Formic Acid413.8 seconds40023050
HILIC_BDD_2 = Merck SeQuant ZIC-HILIC with ACN(0.1% formic acid):water(16 mM ammonium formate)73.9 seconds40023050
UniToyama_Atlantis = RP Waters Atlantis T3 (2.1 x 150 mm, 5 um) with ACN:Water and 0.1% Formic Acid756.4 seconds40023050
BDD_C18 = Hypersil Gold 1.9µm C18 with Water:ACN and 0.1% Formic Acid341.9 seconds40023050
UFZ_Phenomenex = Kinetex Core-Shell C18 2.6 um, 3.0 x 100 mm, Phenomenex with Water:MeOH and 0.1% Formic Acid1159.4 seconds40023050
SNU_RIKEN_POS = Waters ACQUITY UPLC BEH C18 with Water:ACN and 0.1% Formic Acid228.9 seconds40023050
RPMMFDA = Waters ACQUITY UPLC BEH C18 with Water:ACN and 0.1% Formic Acid272.1 seconds40023050
MTBLS87 = Merck SeQuant ZIC-pHILIC column with ACN:Water and :ammonium carbonate372.9 seconds40023050
KI_GIAR_zic_HILIC_pH2_7 = Merck SeQuant ZIC-HILIC with ACN:Water and 0.1% FA218.2 seconds40023050
Meister zic-pHILIC pH9.3 = Merck SeQuant ZIC-pHILIC column with ACN:Water 5mM NH4Ac pH9.3 and 5mM ammonium acetate in water87.0 seconds40023050

Predicted Kovats Retention Indices

Underivatized

MetaboliteSMILESKovats RI ValueColumn TypeReference
N-AcetylleucineCC(C)C[C@H](NC(C)=O)C(O)=O2353.8Standard polar33892256
N-AcetylleucineCC(C)C[C@H](NC(C)=O)C(O)=O1396.3Standard non polar33892256
N-AcetylleucineCC(C)C[C@H](NC(C)=O)C(O)=O1458.3Semi standard non polar33892256

Derivatized

Derivative Name / StructureSMILESKovats RI ValueColumn TypeReference
N-Acetylleucine,1TMS,isomer #1CC(=O)N[C@@H](CC(C)C)C(=O)O[Si](C)(C)C1425.4Semi standard non polar33892256
N-Acetylleucine,1TMS,isomer #2CC(=O)N([C@@H](CC(C)C)C(=O)O)[Si](C)(C)C1439.3Semi standard non polar33892256
N-Acetylleucine,2TMS,isomer #1CC(=O)N([C@@H](CC(C)C)C(=O)O[Si](C)(C)C)[Si](C)(C)C1465.5Semi standard non polar33892256
N-Acetylleucine,2TMS,isomer #1CC(=O)N([C@@H](CC(C)C)C(=O)O[Si](C)(C)C)[Si](C)(C)C1480.6Standard non polar33892256
N-Acetylleucine,2TMS,isomer #1CC(=O)N([C@@H](CC(C)C)C(=O)O[Si](C)(C)C)[Si](C)(C)C1599.6Standard polar33892256
N-Acetylleucine,1TBDMS,isomer #1CC(=O)N[C@@H](CC(C)C)C(=O)O[Si](C)(C)C(C)(C)C1657.4Semi standard non polar33892256
N-Acetylleucine,1TBDMS,isomer #2CC(=O)N([C@@H](CC(C)C)C(=O)O)[Si](C)(C)C(C)(C)C1669.7Semi standard non polar33892256
N-Acetylleucine,2TBDMS,isomer #1CC(=O)N([C@@H](CC(C)C)C(=O)O[Si](C)(C)C(C)(C)C)[Si](C)(C)C(C)(C)C1917.3Semi standard non polar33892256
N-Acetylleucine,2TBDMS,isomer #1CC(=O)N([C@@H](CC(C)C)C(=O)O[Si](C)(C)C(C)(C)C)[Si](C)(C)C(C)(C)C1918.0Standard non polar33892256
N-Acetylleucine,2TBDMS,isomer #1CC(=O)N([C@@H](CC(C)C)C(=O)O[Si](C)(C)C(C)(C)C)[Si](C)(C)C(C)(C)C1917.8Standard polar33892256
Spectra
Biological Properties
Cellular LocationsNot Available
Biospecimen Locations
  • Blood
  • Feces
  • Saliva
  • Urine
Tissue LocationsNot Available
Pathways
Normal Concentrations
BiospecimenStatusValueAgeSexConditionReferenceDetails
FecesDetected but not QuantifiedNot QuantifiedAdult (>18 years old)Both
Normal
details
FecesDetected but not QuantifiedNot QuantifiedAdult (>18 years old)Both
Normal
details
FecesDetected but not QuantifiedNot QuantifiedAdult (>18 years old)Both
Normal
details
SalivaDetected but not QuantifiedNot QuantifiedAdult (>18 years old)Male
Normal
details
SalivaDetected but not QuantifiedNot QuantifiedAdult (>18 years old)Male
Normal
details
SalivaDetected but not QuantifiedNot QuantifiedAdult (>18 years old)Male
Normal
details
SalivaDetected but not QuantifiedNot QuantifiedAdult (>18 years old)Male
Normal
details
SalivaDetected but not QuantifiedNot QuantifiedAdult (>18 years old)Male
Normal
details
SalivaDetected but not QuantifiedNot QuantifiedAdult (>18 years old)Male
Normal
details
SalivaDetected but not QuantifiedNot QuantifiedAdult (>18 years old)Male
Normal
details
SalivaDetected but not QuantifiedNot QuantifiedAdult (>18 years old)Male
Normal
details
SalivaDetected but not QuantifiedNot QuantifiedAdult (>18 years old)Male
Normal
details
SalivaDetected but not QuantifiedNot QuantifiedAdult (>18 years old)Male
Normal
details
UrineDetected and Quantified0.54 (0.34-1.12) umol/mmol creatinineNewborn (0-30 days old)Both
Normal
    • Analysis of 40 NI...
details
Abnormal Concentrations
BiospecimenStatusValueAgeSexConditionReferenceDetails
BloodExpected but not QuantifiedNot QuantifiedNot SpecifiedNot SpecifiedCancer patients undergoing total body irradiation details
FecesDetected but not QuantifiedNot QuantifiedAdult (>18 years old)BothColorectal Cancer details
FecesDetected but not QuantifiedNot QuantifiedAdult (>18 years old)Both
Colorectal cancer
details
FecesDetected but not QuantifiedNot QuantifiedAdult (>18 years old)Both
Colorectal cancer
details
UrineDetected but not QuantifiedNot QuantifiedNot SpecifiedNot SpecifiedCancer patients undergoing total body irradiation details
Associated Disorders and Diseases
Disease References
Colorectal cancer
  1. Brown DG, Rao S, Weir TL, O'Malia J, Bazan M, Brown RJ, Ryan EP: Metabolomics and metabolic pathway networks from human colorectal cancers, adjacent mucosa, and stool. Cancer Metab. 2016 Jun 6;4:11. doi: 10.1186/s40170-016-0151-y. eCollection 2016. [PubMed:27275383 ]
  2. Sinha R, Ahn J, Sampson JN, Shi J, Yu G, Xiong X, Hayes RB, Goedert JJ: Fecal Microbiota, Fecal Metabolome, and Colorectal Cancer Interrelations. PLoS One. 2016 Mar 25;11(3):e0152126. doi: 10.1371/journal.pone.0152126. eCollection 2016. [PubMed:27015276 ]
  3. Goedert JJ, Sampson JN, Moore SC, Xiao Q, Xiong X, Hayes RB, Ahn J, Shi J, Sinha R: Fecal metabolomics: assay performance and association with colorectal cancer. Carcinogenesis. 2014 Sep;35(9):2089-96. doi: 10.1093/carcin/bgu131. Epub 2014 Jul 18. [PubMed:25037050 ]
Associated OMIM IDs
DrugBank IDNot Available
Phenol Explorer Compound IDNot Available
FooDB IDFDB028426
KNApSAcK IDNot Available
Chemspider ID64075
KEGG Compound IDC02710
BioCyc IDCPD-433
BiGG IDNot Available
Wikipedia LinkAcetylleucine
METLIN IDNot Available
PubChem Compound70912
PDB IDNot Available
ChEBI ID17786
Food Biomarker OntologyNot Available
VMH IDNot Available
MarkerDB IDNot Available
Good Scents IDNot Available
References
Synthesis ReferenceNot Available
Material Safety Data Sheet (MSDS)Download (PDF)
General References
  1. Sass JO, Mohr V, Olbrich H, Engelke U, Horvath J, Fliegauf M, Loges NT, Schweitzer-Krantz S, Moebus R, Weiler P, Kispert A, Superti-Furga A, Wevers RA, Omran H: Mutations in ACY1, the gene encoding aminoacylase 1, cause a novel inborn error of metabolism. Am J Hum Genet. 2006 Mar;78(3):401-9. Epub 2006 Jan 18. [PubMed:16465618 ]
  2. Roux A, Xu Y, Heilier JF, Olivier MF, Ezan E, Tabet JC, Junot C: Annotation of the human adult urinary metabolome and metabolite identification using ultra high performance liquid chromatography coupled to a linear quadrupole ion trap-Orbitrap mass spectrometer. Anal Chem. 2012 Aug 7;84(15):6429-37. doi: 10.1021/ac300829f. Epub 2012 Jul 17. [PubMed:22770225 ]
  3. Tsutsui H, Maeda T, Min JZ, Inagaki S, Higashi T, Kagawa Y, Toyo'oka T: Biomarker discovery in biological specimens (plasma, hair, liver and kidney) of diabetic mice based upon metabolite profiling using ultra-performance liquid chromatography with electrospray ionization time-of-flight mass spectrometry. Clin Chim Acta. 2011 May 12;412(11-12):861-72. doi: 10.1016/j.cca.2010.12.023. Epub 2010 Dec 24. [PubMed:21185819 ]
  4. Jellum E, Horn L, Thoresen O, Kvittingen EA, Stokke O: Urinary excretion of N-acetyl amino acids in patients with some inborn errors of amino acid metabolism. Scand J Clin Lab Invest Suppl. 1986;184:21-6. [PubMed:3473611 ]
  5. Tanaka H, Sirich TL, Plummer NS, Weaver DS, Meyer TW: An Enlarged Profile of Uremic Solutes. PLoS One. 2015 Aug 28;10(8):e0135657. doi: 10.1371/journal.pone.0135657. eCollection 2015. [PubMed:26317986 ]
  6. Van Damme P, Hole K, Pimenta-Marques A, Helsens K, Vandekerckhove J, Martinho RG, Gevaert K, Arnesen T: NatF contributes to an evolutionary shift in protein N-terminal acetylation and is important for normal chromosome segregation. PLoS Genet. 2011 Jul;7(7):e1002169. doi: 10.1371/journal.pgen.1002169. Epub 2011 Jul 7. [PubMed:21750686 ]
  7. Ree R, Varland S, Arnesen T: Spotlight on protein N-terminal acetylation. Exp Mol Med. 2018 Jul 27;50(7):1-13. doi: 10.1038/s12276-018-0116-z. [PubMed:30054468 ]
  8. Toyohara T, Akiyama Y, Suzuki T, Takeuchi Y, Mishima E, Tanemoto M, Momose A, Toki N, Sato H, Nakayama M, Hozawa A, Tsuji I, Ito S, Soga T, Abe T: Metabolomic profiling of uremic solutes in CKD patients. Hypertens Res. 2010 Sep;33(9):944-52. doi: 10.1038/hr.2010.113. Epub 2010 Jul 8. [PubMed:20613759 ]
  9. Vanholder R, Baurmeister U, Brunet P, Cohen G, Glorieux G, Jankowski J: A bench to bedside view of uremic toxins. J Am Soc Nephrol. 2008 May;19(5):863-70. doi: 10.1681/ASN.2007121377. Epub 2008 Feb 20. [PubMed:18287557 ]