You are using an unsupported browser. Please upgrade your browser to a newer version to get the best experience on Human Metabolome Database.
Record Information
Version4.0
StatusExpected but not Quantified
Creation Date2009-07-25 00:03:29 UTC
Update Date2019-07-23 05:58:11 UTC
HMDB IDHMDB0012588
Secondary Accession Numbers
  • HMDB12588
Metabolite Identification
Common Name15-Epi-lipoxin B5
Description15-epi-lipoxin B5 is a lipoxin derivative. Lipoxins (LXs) and aspirin-triggered Lipoxin (ATL) are trihydroxytetraene-containing eicosanoids generated from arachidonic acid that are distinct in structure, formation, and function from the many other proinflammatory lipid-derived mediators. These endogenous eicosanoids have now emerged as founding members of the first class of lipid/chemical mediators involved in the resolution of the inflammatory response. Lipoxin A4 (LXA4), ATL, and their metabolic stable analogs elicit cellular responses and regulate leukocyte trafficking in vivo by activating the specific receptor, ALX. Many of the eicosanoids derived from arachidonic acid (AA2), including prostaglandins (PGs) and leukotrienes (LTs), play important roles as local mediators exerting a wide range of actions relevant in immune hypersensitivity and inflammation. However, recent observations indicate that other agents derived from the lipoxygenase (LO) pathways are formed and play a key role in initiating the resolution of acute inflammation. This phenomenon is an active process that is governed by specific lipid mediators and involves a series of well-orchestrated temporal events. Thus, potent locally released mediators serve as checkpoint controllers of inflammation. In addition to the well-appreciated ability of aspirin to inhibit PGs, aspirin also acetylates cyclooxygenase (COX)-2, triggering the formation of a 15-epimeric form of lipoxins, termed aspirin-triggered LXA4 (ATL). These eicosanoids (i.e., LXA4 and ATL) with a unique trihydroxytetraene structure function as 'stop signals' in inflammation and actively participate in dampening host responses to bring the inflammation to a close, namely, resolution. LXA4 and ATL elicit the multicellular responses via a specific G protein-coupled receptor (GPCR) termed ALX that has been identified in human. (PMID: 16968948 , 11478982 ).
Structure
Data?1563861491
Synonyms
ValueSource
5(S),14(R),15(S)-Trihydroxy-6E,8Z,10E,12E,17Z-eicosapentaenoateHMDB
5(S),14(R),15(S)-Trihydroxy-6E,8Z,10E,12E,17Z-eicosapentaenoic acidHMDB
5(S),14(R),15(S)-Trihydroxy-6E,8Z,10E,12E,17Z-eicosapentaenoic acid anionHMDB
Chemical FormulaC20H30O5
Average Molecular Weight350.4492
Monoisotopic Molecular Weight350.20932407
IUPAC Name(5R,6E,8Z,10E,12E,14R,15R,17Z)-5,14,15-trihydroxyicosa-6,8,10,12,17-pentaenoic acid
Traditional Name(5R,6E,8Z,10E,12E,14R,15R,17Z)-5,14,15-trihydroxyicosa-6,8,10,12,17-pentaenoic acid
CAS Registry NumberNot Available
SMILES
CC\C=C/C[C@@H](O)[C@H](O)\C=C\C=C\C=C/C=C/[C@H](O)CCCC(O)=O
InChI Identifier
InChI=1S/C20H30O5/c1-2-3-8-14-18(22)19(23)15-10-7-5-4-6-9-12-17(21)13-11-16-20(24)25/h3-10,12,15,17-19,21-23H,2,11,13-14,16H2,1H3,(H,24,25)/b6-4-,7-5+,8-3-,12-9+,15-10+/t17-,18+,19+/m0/s1
InChI KeyVLLDKSJDBRLUOY-XIFXWWOOSA-N
Chemical Taxonomy
DescriptionThis compound belongs to the class of organic compounds known as hydroxyeicosapentaenoic acids. These are eicosanoic acids with an attached hydroxyl group and five CC double bonds.
KingdomOrganic compounds
Super ClassLipids and lipid-like molecules
ClassFatty Acyls
Sub ClassEicosanoids
Direct ParentHydroxyeicosapentaenoic acids
Alternative Parents
Substituents
  • Hydroxyeicosapentaenoic acid
  • Long-chain fatty acid
  • Hydroxy fatty acid
  • Fatty acid
  • Unsaturated fatty acid
  • Secondary alcohol
  • Carboxylic acid derivative
  • Carboxylic acid
  • Monocarboxylic acid or derivatives
  • Polyol
  • Organic oxide
  • Organic oxygen compound
  • Hydrocarbon derivative
  • Carbonyl group
  • Organooxygen compound
  • Alcohol
  • Aliphatic acyclic compound
Molecular FrameworkAliphatic acyclic compounds
External DescriptorsNot Available
Ontology
Disposition

Route of exposure:

Source:

Biological location:

Process

Naturally occurring process:

Role

Industrial application:

Biological role:

Physical Properties
StateSolid
Experimental Properties
PropertyValueReference
Melting PointNot AvailableNot Available
Boiling PointNot AvailableNot Available
Water SolubilityNot AvailableNot Available
LogPNot AvailableNot Available
Predicted Properties
PropertyValueSource
Water Solubility0.049 g/LALOGPS
logP4.32ALOGPS
logP2.69ChemAxon
logS-3.8ALOGPS
pKa (Strongest Acidic)4.65ChemAxon
pKa (Strongest Basic)-1.5ChemAxon
Physiological Charge-1ChemAxon
Hydrogen Acceptor Count5ChemAxon
Hydrogen Donor Count4ChemAxon
Polar Surface Area97.99 ŲChemAxon
Rotatable Bond Count13ChemAxon
Refractivity105.46 m³·mol⁻¹ChemAxon
Polarizability39.96 ųChemAxon
Number of Rings0ChemAxon
Bioavailability1ChemAxon
Rule of FiveYesChemAxon
Ghose FilterYesChemAxon
Veber's RuleYesChemAxon
MDDR-like RuleYesChemAxon
Spectra
Spectrum TypeDescriptionSplash KeyView
Predicted GC-MSPredicted GC-MS Spectrum - GC-MS (Non-derivatized) - 70eV, Positivesplash10-0ue9-6394000000-572735dcf1831018ce3eJSpectraViewer | MoNA
Predicted GC-MSPredicted GC-MS Spectrum - GC-MS (4 TMS) - 70eV, Positivesplash10-00fr-9210788000-e86b94ae5d5110ec63cfJSpectraViewer | MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 10V, Positivesplash10-00lr-0019000000-df8f0735888c561b8405JSpectraViewer | MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 20V, Positivesplash10-014i-9386000000-e86e12dc153255beadf7JSpectraViewer | MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 40V, Positivesplash10-014u-9430000000-d4dff6c7ee5819b8cf4dJSpectraViewer | MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 10V, Negativesplash10-0002-0009000000-9e5edf705aed4fd40fc9JSpectraViewer | MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 20V, Negativesplash10-000t-5189000000-b6b8e8488989195511ebJSpectraViewer | MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 40V, Negativesplash10-0a4j-9240000000-e293644bc70e5e283515JSpectraViewer | MoNA
Biological Properties
Cellular Locations
  • Extracellular
  • Membrane
Biospecimen LocationsNot Available
Tissue LocationsNot Available
Pathways
Normal Concentrations
Not Available
Abnormal Concentrations
Not Available
Associated Disorders and Diseases
Disease ReferencesNone
Associated OMIM IDsNone
DrugBank IDNot Available
Phenol Explorer Compound IDNot Available
FoodDB IDFDB029136
KNApSAcK IDNot Available
Chemspider IDNot Available
KEGG Compound IDNot Available
BioCyc IDNot Available
BiGG IDNot Available
Wikipedia LinkNot Available
METLIN IDNot Available
PubChem Compound53481476
PDB IDNot Available
ChEBI IDNot Available
Food Biomarker OntologyNot Available
VMH IDNot Available
References
Synthesis ReferenceNot Available
Material Safety Data Sheet (MSDS)Not Available
General References
  1. Chiang N, Serhan CN, Dahlen SE, Drazen JM, Hay DW, Rovati GE, Shimizu T, Yokomizo T, Brink C: The lipoxin receptor ALX: potent ligand-specific and stereoselective actions in vivo. Pharmacol Rev. 2006 Sep;58(3):463-87. [PubMed:16968948 ]
  2. McMahon B, Mitchell S, Brady HR, Godson C: Lipoxins: revelations on resolution. Trends Pharmacol Sci. 2001 Aug;22(8):391-5. [PubMed:11478982 ]
  3. Simons K, Toomre D: Lipid rafts and signal transduction. Nat Rev Mol Cell Biol. 2000 Oct;1(1):31-9. [PubMed:11413487 ]
  4. Watson AD: Thematic review series: systems biology approaches to metabolic and cardiovascular disorders. Lipidomics: a global approach to lipid analysis in biological systems. J Lipid Res. 2006 Oct;47(10):2101-11. Epub 2006 Aug 10. [PubMed:16902246 ]
  5. Sethi JK, Vidal-Puig AJ: Thematic review series: adipocyte biology. Adipose tissue function and plasticity orchestrate nutritional adaptation. J Lipid Res. 2007 Jun;48(6):1253-62. Epub 2007 Mar 20. [PubMed:17374880 ]
  6. Lingwood D, Simons K: Lipid rafts as a membrane-organizing principle. Science. 2010 Jan 1;327(5961):46-50. doi: 10.1126/science.1174621. [PubMed:20044567 ]
  7. Gunstone, Frank D., John L. Harwood, and Albert J. Dijkstra (2007). The lipid handbook with CD-ROM. CRC Press.