| Record Information |
|---|
| Version | 5.0 |
|---|
| Status | Detected and Quantified |
|---|
| Creation Date | 2012-09-08 14:59:46 UTC |
|---|
| Update Date | 2022-11-30 19:04:14 UTC |
|---|
| HMDB ID | HMDB0029207 |
|---|
| Secondary Accession Numbers | |
|---|
| Metabolite Identification |
|---|
| Common Name | LysoPC(6:0/0:0) |
|---|
| Description | Lysopc(6:0), also known as LPC(6:0/0:0) or 1-Caproyl-sn-glycero-3-phosphocholine, is classified as a member of the 1-acyl-sn-glycero-3-phosphocholines. 1-acyl-sn-glycero-3-phosphocholines are glycerophosphocholines in which the glycerol is esterified with a fatty acid at O-1 position, and linked at position 3 to a phosphocholine. Lysopc(6:0) is considered to be a practically insoluble (in water) and a moderately acidic compound. Lysopc(6:0) is a glycerophosphocholine lipid molecule. Lysopc(6:0) can be found in urine. LPL-R's are members of the G protein-coupled receptor (GPR) family of integral membrane proteins. Lysophosphatidylcholines (LPCs) specifically bind to GPR119, GPR40, GPR55 and GPR4. binding of LPCs to GPR119, GPR40 and GPR55 induces intracellular calcium mobilization and leads to increased glucose-stimulated insulin secretion in different cell systems. In blood or plasma LPCs are bound mainly to albumin and to a lesser extent to lipoproteins. Inflammation, cell damage and other pathophysiological conditions can profoundly alter the ratio of free to albumin bound LPC through increased production of LPC or decreased plasma levels of albumin (PMID: 32599910 ). In particular, lower levels of albumin (hypoalbuminemia) lead to lower levels of LPC in the blood. Hypoalbuminemia with albumin concentrations of <20 g/L are typical of patients with sepsis, burns or serious trauma (PMID: 26557421 ). Such low levels of albumin often lead to LPC levels that are 50-80 % lower than that seen in healthy individuals (PMID: 27501420 ). Decreased levels of LPC have been observed in a number of other inflammatory conditions beyond sepsis, including rheumatoid arthritis, diabetes, schizophrenia, polycystic ovary syndrome, Alzheimer’s disease, pulmonary arterial hypertension, aging, asthma and liver cirrhosis, where they were associated with increased mortality risk (PMID: 32599910 ). LPCs have a number of protective or anti-inflammatory effects. Higher levels of LPC induce cyclooxygenase-2 and endothelial nitric oxide synthase (eNOS) expression in endothelial cells, both of which can have vasoprotective effects either via production of prostacyclin or nitric oxide (PMID: 32599910 ). LPCs have been shown to elicit a number of effects on the innate immune system and effectively serve as dual-activity ligand molecules. In particular, LPCs directly activate toll-like receptor (TLR) 4 and TLR-2-1 receptors in the absence of classical TLR ligands. However, LPCs can also inhibit TLR-mediated signaling in the presence of classical TLR ligands, thereby acting as anti-inflammatory molecules (PMID: 32599910 ). Low levels of LPC during a bacterial or viral infection with TLR-mediated signalling can lead to opposing (inflammatory vs. anti-inflammatory) effects and immune dysregulation. |
|---|
| Structure | [H][C@@](O)(COC(=O)CCCCC)COP([O-])(=O)OCC[N+](C)(C)C InChI=1S/C14H30NO7P/c1-5-6-7-8-14(17)20-11-13(16)12-22-23(18,19)21-10-9-15(2,3)4/h13,16H,5-12H2,1-4H3/t13-/m1/s1 |
|---|
| Synonyms | | Value | Source |
|---|
| 1-Caproyl-sn-glycero-3-phosphocholine | ChEBI | | LPC 6:0/0:0 | ChEBI | | LPC(6:0/0:0) | ChEBI | | PC(6:0/0:0) | ChEBI | | LysoPC a C6:0 | HMDB | | 1-Caproylglycerophosphocholine | HMDB |
|
|---|
| Chemical Formula | C14H30NO7P |
|---|
| Average Molecular Weight | 355.3643 |
|---|
| Monoisotopic Molecular Weight | 355.175988831 |
|---|
| IUPAC Name | (2-{[(2R)-3-(hexanoyloxy)-2-hydroxypropyl phosphono]oxy}ethyl)trimethylazanium |
|---|
| Traditional Name | (2-{[(2R)-3-(hexanoyloxy)-2-hydroxypropyl phosphono]oxy}ethyl)trimethylazanium |
|---|
| CAS Registry Number | Not Available |
|---|
| SMILES | [H][C@@](O)(COC(=O)CCCCC)COP([O-])(=O)OCC[N+](C)(C)C |
|---|
| InChI Identifier | InChI=1S/C14H30NO7P/c1-5-6-7-8-14(17)20-11-13(16)12-22-23(18,19)21-10-9-15(2,3)4/h13,16H,5-12H2,1-4H3/t13-/m1/s1 |
|---|
| InChI Key | WDNDPXJAUNUOFK-CYBMUJFWSA-N |
|---|
| Chemical Taxonomy |
|---|
| Description | Belongs to the class of organic compounds known as 1-acyl-sn-glycero-3-phosphocholines. These are glycerophosphocholines in which the glycerol is esterified with a fatty acid at O-1 position, and linked at position 3 to a phosphocholine. |
|---|
| Kingdom | Organic compounds |
|---|
| Super Class | Lipids and lipid-like molecules |
|---|
| Class | Glycerophospholipids |
|---|
| Sub Class | Glycerophosphocholines |
|---|
| Direct Parent | 1-acyl-sn-glycero-3-phosphocholines |
|---|
| Alternative Parents | |
|---|
| Substituents | - 1-acyl-sn-glycero-3-phosphocholine
- Phosphocholine
- Fatty acid ester
- Dialkyl phosphate
- Organic phosphoric acid derivative
- Phosphoric acid ester
- Alkyl phosphate
- Fatty acyl
- Tetraalkylammonium salt
- Quaternary ammonium salt
- Secondary alcohol
- Carboxylic acid ester
- Carboxylic acid derivative
- Monocarboxylic acid or derivatives
- Organic oxide
- Organooxygen compound
- Organonitrogen compound
- Organic nitrogen compound
- Alcohol
- Organic oxygen compound
- Organopnictogen compound
- Carbonyl group
- Organic salt
- Amine
- Hydrocarbon derivative
- Aliphatic acyclic compound
|
|---|
| Molecular Framework | Aliphatic acyclic compounds |
|---|
| External Descriptors | |
|---|
| Ontology |
|---|
| Physiological effect | |
|---|
| Disposition | |
|---|
| Process | |
|---|
| Role | |
|---|
| Physical Properties |
|---|
| State | Solid |
|---|
| Experimental Molecular Properties | | Property | Value | Reference |
|---|
| Melting Point | Not Available | Not Available | | Boiling Point | Not Available | Not Available | | Water Solubility | Not Available | Not Available | | LogP | Not Available | Not Available |
|
|---|
| Experimental Chromatographic Properties | Not Available |
|---|
| Predicted Molecular Properties | |
|---|
| Predicted Chromatographic Properties | Predicted Collision Cross SectionsPredicted Retention Times Underivatized| Chromatographic Method | Retention Time | Reference |
|---|
| Measured using a Waters Acquity ultraperformance liquid chromatography (UPLC) ethylene-bridged hybrid (BEH) C18 column (100 mm × 2.1 mm; 1.7 μmparticle diameter). Predicted by Afia on May 17, 2022. Predicted by Afia on May 17, 2022. | 4.66 minutes | 32390414 | | Predicted by Siyang on May 30, 2022 | 10.749 minutes | 33406817 | | Predicted by Siyang using ReTip algorithm on June 8, 2022 | 6.11 minutes | 32390414 | | AjsUoB = Accucore 150 Amide HILIC with 10mM Ammonium Formate, 0.1% Formic Acid | 272.6 seconds | 40023050 | | Fem_Long = Waters ACQUITY UPLC HSS T3 C18 with Water:MeOH and 0.1% Formic Acid | 1270.3 seconds | 40023050 | | Fem_Lipids = Ascentis Express C18 with (60:40 water:ACN):(90:10 IPA:ACN) and 10mM NH4COOH + 0.1% Formic Acid | 183.1 seconds | 40023050 | | Life_Old = Waters ACQUITY UPLC BEH C18 with Water:(20:80 acetone:ACN) and 0.1% Formic Acid | 141.8 seconds | 40023050 | | Life_New = RP Waters ACQUITY UPLC HSS T3 C18 with Water:(30:70 MeOH:ACN) and 0.1% Formic Acid | 158.5 seconds | 40023050 | | RIKEN = Waters ACQUITY UPLC BEH C18 with Water:ACN and 0.1% Formic Acid | 85.5 seconds | 40023050 | | Eawag_XBridgeC18 = XBridge C18 3.5u 2.1x50 mm with Water:MeOH and 0.1% Formic Acid | 396.0 seconds | 40023050 | | BfG_NTS_RP1 =Agilent Zorbax Eclipse Plus C18 (2.1 mm x 150 mm, 3.5 um) with Water:ACN and 0.1% Formic Acid | 401.8 seconds | 40023050 | | HILIC_BDD_2 = Merck SeQuant ZIC-HILIC with ACN(0.1% formic acid):water(16 mM ammonium formate) | 762.5 seconds | 40023050 | | UniToyama_Atlantis = RP Waters Atlantis T3 (2.1 x 150 mm, 5 um) with ACN:Water and 0.1% Formic Acid | 960.3 seconds | 40023050 | | BDD_C18 = Hypersil Gold 1.9µm C18 with Water:ACN and 0.1% Formic Acid | 285.3 seconds | 40023050 | | UFZ_Phenomenex = Kinetex Core-Shell C18 2.6 um, 3.0 x 100 mm, Phenomenex with Water:MeOH and 0.1% Formic Acid | 1372.0 seconds | 40023050 | | SNU_RIKEN_POS = Waters ACQUITY UPLC BEH C18 with Water:ACN and 0.1% Formic Acid | 247.3 seconds | 40023050 | | RPMMFDA = Waters ACQUITY UPLC BEH C18 with Water:ACN and 0.1% Formic Acid | 261.4 seconds | 40023050 | | MTBLS87 = Merck SeQuant ZIC-pHILIC column with ACN:Water and :ammonium carbonate | 395.3 seconds | 40023050 | | KI_GIAR_zic_HILIC_pH2_7 = Merck SeQuant ZIC-HILIC with ACN:Water and 0.1% FA | 200.2 seconds | 40023050 | | Meister zic-pHILIC pH9.3 = Merck SeQuant ZIC-pHILIC column with ACN:Water 5mM NH4Ac pH9.3 and 5mM ammonium acetate in water | 113.2 seconds | 40023050 |
Predicted Kovats Retention IndicesUnderivatizedDerivatized |
|---|
| Spectra |
|---|
| GC-MS Spectra| Spectrum Type | Description | Splash Key | Deposition Date | Source | View |
|---|
| Predicted GC-MS | Predicted GC-MS Spectrum - LysoPC(6:0/0:0) GC-MS (1 TMS) - 70eV, Positive | splash10-006t-9301000000-def15b9bb2adb386e754 | 2017-10-06 | Wishart Lab | View Spectrum | | Predicted GC-MS | Predicted GC-MS Spectrum - LysoPC(6:0/0:0) GC-MS (Non-derivatized) - 70eV, Positive | Not Available | 2021-10-12 | Wishart Lab | View Spectrum | | Predicted GC-MS | Predicted GC-MS Spectrum - LysoPC(6:0/0:0) GC-MS (Non-derivatized) - 70eV, Positive | Not Available | 2021-10-12 | Wishart Lab | View Spectrum |
MS/MS Spectra| Spectrum Type | Description | Splash Key | Deposition Date | Source | View |
|---|
| Predicted LC-MS/MS | Predicted LC-MS/MS Spectrum - LysoPC(6:0/0:0) 10V, Positive-QTOF | splash10-0a4r-0009000000-10fb247752e5c17f78fb | 2021-09-22 | Wishart Lab | View Spectrum | | Predicted LC-MS/MS | Predicted LC-MS/MS Spectrum - LysoPC(6:0/0:0) 20V, Positive-QTOF | splash10-053r-0906000000-b02b83d71b6fdcf372f0 | 2021-09-22 | Wishart Lab | View Spectrum | | Predicted LC-MS/MS | Predicted LC-MS/MS Spectrum - LysoPC(6:0/0:0) 40V, Positive-QTOF | splash10-0f8i-0914000000-08f27142c89c3bc3f16f | 2021-09-22 | Wishart Lab | View Spectrum | | Predicted LC-MS/MS | Predicted LC-MS/MS Spectrum - LysoPC(6:0/0:0) 10V, Negative-QTOF | splash10-0udi-2209000000-919bda577ec456144319 | 2021-09-23 | Wishart Lab | View Spectrum | | Predicted LC-MS/MS | Predicted LC-MS/MS Spectrum - LysoPC(6:0/0:0) 20V, Negative-QTOF | splash10-00kb-9500000000-b7c9e3805c642b021c37 | 2021-09-23 | Wishart Lab | View Spectrum | | Predicted LC-MS/MS | Predicted LC-MS/MS Spectrum - LysoPC(6:0/0:0) 40V, Negative-QTOF | splash10-014i-0900000000-4dd9137b7ddff312abe4 | 2021-09-23 | Wishart Lab | View Spectrum | | Predicted LC-MS/MS | Predicted LC-MS/MS Spectrum - LysoPC(6:0/0:0) 10V, Positive-QTOF | splash10-03di-0009000000-6c8462dc74410c937b4d | 2021-09-23 | Wishart Lab | View Spectrum | | Predicted LC-MS/MS | Predicted LC-MS/MS Spectrum - LysoPC(6:0/0:0) 20V, Positive-QTOF | splash10-0xr0-0109000000-1ba9a857e6c2b075917b | 2021-09-23 | Wishart Lab | View Spectrum | | Predicted LC-MS/MS | Predicted LC-MS/MS Spectrum - LysoPC(6:0/0:0) 40V, Positive-QTOF | splash10-0umi-0903000000-d636fa9697823fc649c1 | 2021-09-23 | Wishart Lab | View Spectrum | | Predicted LC-MS/MS | Predicted LC-MS/MS Spectrum - LysoPC(6:0/0:0) 10V, Positive-QTOF | splash10-004i-0009000000-02b6629031c5a097fbfc | 2021-09-23 | Wishart Lab | View Spectrum | | Predicted LC-MS/MS | Predicted LC-MS/MS Spectrum - LysoPC(6:0/0:0) 20V, Positive-QTOF | splash10-016r-0009000000-b5567f2a3e72a7c1fe1a | 2021-09-23 | Wishart Lab | View Spectrum | | Predicted LC-MS/MS | Predicted LC-MS/MS Spectrum - LysoPC(6:0/0:0) 40V, Positive-QTOF | splash10-0fr2-0905000000-d3664585aedfb1c487d9 | 2021-09-23 | Wishart Lab | View Spectrum | | Predicted LC-MS/MS | Predicted LC-MS/MS Spectrum - LysoPC(6:0/0:0) 10V, Negative-QTOF | splash10-0006-0009000000-96d8aa54c1fd8a2c877d | 2021-09-25 | Wishart Lab | View Spectrum | | Predicted LC-MS/MS | Predicted LC-MS/MS Spectrum - LysoPC(6:0/0:0) 20V, Negative-QTOF | splash10-014l-0907000000-a2d2180a0938856ad6dc | 2021-09-25 | Wishart Lab | View Spectrum | | Predicted LC-MS/MS | Predicted LC-MS/MS Spectrum - LysoPC(6:0/0:0) 40V, Negative-QTOF | splash10-014i-0933000000-c14196cb4490fe56fd20 | 2021-09-25 | Wishart Lab | View Spectrum |
NMR Spectra| Spectrum Type | Description | Deposition Date | Source | View |
|---|
| Predicted 1D NMR | 13C NMR Spectrum (1D, 100 MHz, D2O, predicted) | 2021-09-16 | Wishart Lab | View Spectrum | | Predicted 1D NMR | 1H NMR Spectrum (1D, 100 MHz, D2O, predicted) | 2021-09-16 | Wishart Lab | View Spectrum | | Predicted 1D NMR | 13C NMR Spectrum (1D, 200 MHz, D2O, predicted) | 2021-09-16 | Wishart Lab | View Spectrum | | Predicted 1D NMR | 1H NMR Spectrum (1D, 200 MHz, D2O, predicted) | 2021-09-16 | Wishart Lab | View Spectrum | | Predicted 1D NMR | 13C NMR Spectrum (1D, 300 MHz, D2O, predicted) | 2021-09-16 | Wishart Lab | View Spectrum | | Predicted 1D NMR | 1H NMR Spectrum (1D, 300 MHz, D2O, predicted) | 2021-09-16 | Wishart Lab | View Spectrum | | Predicted 1D NMR | 13C NMR Spectrum (1D, 400 MHz, D2O, predicted) | 2021-09-16 | Wishart Lab | View Spectrum | | Predicted 1D NMR | 1H NMR Spectrum (1D, 400 MHz, D2O, predicted) | 2021-09-16 | Wishart Lab | View Spectrum | | Predicted 1D NMR | 13C NMR Spectrum (1D, 500 MHz, D2O, predicted) | 2021-09-16 | Wishart Lab | View Spectrum | | Predicted 1D NMR | 1H NMR Spectrum (1D, 500 MHz, D2O, predicted) | 2021-09-16 | Wishart Lab | View Spectrum | | Predicted 1D NMR | 13C NMR Spectrum (1D, 600 MHz, D2O, predicted) | 2021-09-16 | Wishart Lab | View Spectrum | | Predicted 1D NMR | 1H NMR Spectrum (1D, 600 MHz, D2O, predicted) | 2021-09-16 | Wishart Lab | View Spectrum | | Predicted 1D NMR | 13C NMR Spectrum (1D, 700 MHz, D2O, predicted) | 2021-09-16 | Wishart Lab | View Spectrum | | Predicted 1D NMR | 1H NMR Spectrum (1D, 700 MHz, D2O, predicted) | 2021-09-16 | Wishart Lab | View Spectrum | | Predicted 1D NMR | 13C NMR Spectrum (1D, 800 MHz, D2O, predicted) | 2021-09-16 | Wishart Lab | View Spectrum | | Predicted 1D NMR | 1H NMR Spectrum (1D, 800 MHz, D2O, predicted) | 2021-09-16 | Wishart Lab | View Spectrum | | Predicted 1D NMR | 13C NMR Spectrum (1D, 900 MHz, D2O, predicted) | 2021-09-16 | Wishart Lab | View Spectrum | | Predicted 1D NMR | 1H NMR Spectrum (1D, 900 MHz, D2O, predicted) | 2021-09-16 | Wishart Lab | View Spectrum | | Predicted 1D NMR | 13C NMR Spectrum (1D, 1000 MHz, D2O, predicted) | 2021-09-16 | Wishart Lab | View Spectrum | | Predicted 1D NMR | 1H NMR Spectrum (1D, 1000 MHz, D2O, predicted) | 2021-09-16 | Wishart Lab | View Spectrum |
|
|---|
| Biological Properties |
|---|
| Cellular Locations | Not Available |
|---|
| Biospecimen Locations | |
|---|
| Tissue Locations | Not Available |
|---|
| Pathways | |
|---|
| Normal Concentrations |
|---|
| |
| Urine | Detected and Quantified | 0.0045 (0.0022-0.0074) umol/mmol creatinine | Adult (>18 years old) | Both | Normal | | details |
|
|---|
| Abnormal Concentrations |
|---|
| Not Available |
|---|
| Associated Disorders and Diseases |
|---|
| Disease References | None |
|---|
| Associated OMIM IDs | None |
|---|
| External Links |
|---|
| DrugBank ID | Not Available |
|---|
| Phenol Explorer Compound ID | Not Available |
|---|
| FooDB ID | FDB031400 |
|---|
| KNApSAcK ID | Not Available |
|---|
| Chemspider ID | 24823024 |
|---|
| KEGG Compound ID | Not Available |
|---|
| BioCyc ID | Not Available |
|---|
| BiGG ID | Not Available |
|---|
| Wikipedia Link | Not Available |
|---|
| METLIN ID | Not Available |
|---|
| PubChem Compound | 13917464 |
|---|
| PDB ID | Not Available |
|---|
| ChEBI ID | 78215 |
|---|
| Food Biomarker Ontology | Not Available |
|---|
| VMH ID | Not Available |
|---|
| MarkerDB ID | Not Available |
|---|
| Good Scents ID | Not Available |
|---|
| References |
|---|
| Synthesis Reference | Not Available |
|---|
| Material Safety Data Sheet (MSDS) | Not Available |
|---|
| General References | - Simons K, Toomre D: Lipid rafts and signal transduction. Nat Rev Mol Cell Biol. 2000 Oct;1(1):31-9. [PubMed:11413487 ]
- Watson AD: Thematic review series: systems biology approaches to metabolic and cardiovascular disorders. Lipidomics: a global approach to lipid analysis in biological systems. J Lipid Res. 2006 Oct;47(10):2101-11. Epub 2006 Aug 10. [PubMed:16902246 ]
- Sethi JK, Vidal-Puig AJ: Thematic review series: adipocyte biology. Adipose tissue function and plasticity orchestrate nutritional adaptation. J Lipid Res. 2007 Jun;48(6):1253-62. Epub 2007 Mar 20. [PubMed:17374880 ]
- Lingwood D, Simons K: Lipid rafts as a membrane-organizing principle. Science. 2010 Jan 1;327(5961):46-50. doi: 10.1126/science.1174621. [PubMed:20044567 ]
- Divecha N, Irvine RF: Phospholipid signaling. Cell. 1995 Jan 27;80(2):269-78. [PubMed:7834746 ]
- Wernly B, Lichtenauer M, Hoppe UC, Jung C: Hyperglycemia in septic patients: an essential stress survival response in all, a robust marker for risk stratification in some, to be messed with in none. J Thorac Dis. 2016 Jul;8(7):E621-4. doi: 10.21037/jtd.2016.05.24. [PubMed:27501420 ]
- Knuplez E, Marsche G: An Updated Review of Pro- and Anti-Inflammatory Properties of Plasma Lysophosphatidylcholines in the Vascular System. Int J Mol Sci. 2020 Jun 24;21(12). pii: ijms21124501. doi: 10.3390/ijms21124501. [PubMed:32599910 ]
- Sun JK, Sun F, Wang X, Yuan ST, Zheng SY, Mu XW: Risk factors and prognosis of hypoalbuminemia in surgical septic patients. PeerJ. 2015 Oct 1;3:e1267. doi: 10.7717/peerj.1267. eCollection 2015. [PubMed:26557421 ]
- Cevc, Gregor (1993). Phospholipids Handbook. Marcel Dekker.
- Gunstone, Frank D., John L. Harwood, and Albert J. Dijkstra (2007). The lipid handbook with CD-ROM. CRC Press.
|
|---|