You are using an unsupported browser. Please upgrade your browser to a newer version to get the best experience on Human Metabolome Database.
Record Information
Version4.0
StatusDetected but not Quantified
Creation Date2012-09-11 17:41:49 UTC
Update Date2019-01-11 19:42:09 UTC
HMDB IDHMDB0031243
Secondary Accession Numbers
  • HMDB31243
Metabolite Identification
Common Name2-Methylpropanal
Description2-Methylpropanal is found in alcoholic beverages. 2-Methylpropanal is found in tea, beer, sake, brandy, fresh fruits (apple, banana, cherry etc.), breads, cooked pork, and spearmint oi
Structure
Data?1547235729
Synonyms
ValueSource
2-MethylpropionaldehydeChEBI
alpha-MethylpropionaldehydeChEBI
IsobutanalChEBI
IsobutylaldehydeChEBI
Isobutyric aldehydeChEBI
a-MethylpropionaldehydeGenerator
α-methylpropionaldehydeGenerator
2-Methyl-1-propanalHMDB
2-METHYL-propanalHMDB
2-Methyl-propionaldehydeHMDB
alpha -MethylpropionaldehydeHMDB
Butyric iso aldehydeHMDB
FEMA 2220HMDB
iso-ButyraldehydeHMDB
iso-C3H7CHOHMDB
IsobutaldehydeHMDB
Isobutyl aldehy deHMDB
Isobutyl aldehydeHMDB
IsobutyralHMDB
IsobutyraldehydHMDB
IsobutyraldehydeHMDB
Isobutyryl aldehydeHMDB
Isopropyl aldehydeHMDB
Isopropyl formaldehydeHMDB
IsopropylaldehydeHMDB
IsopropylformaldehydeHMDB
Methyl propanalHMDB
MethylpropanalHMDB
so-Butyl aldehydeHMDB
Valine aldehydeHMDB
Chemical FormulaC4H8O
Average Molecular Weight72.1057
Monoisotopic Molecular Weight72.057514878
IUPAC Name2-methylpropanal
Traditional Nameisobutyraldehyde
CAS Registry Number78-84-2
SMILES
CC(C)C=O
InChI Identifier
InChI=1S/C4H8O/c1-4(2)3-5/h3-4H,1-2H3
InChI KeyAMIMRNSIRUDHCM-UHFFFAOYSA-N
Chemical Taxonomy
DescriptionThis compound belongs to the class of organic compounds known as short-chain aldehydes. These are an aldehyde with a chain length containing between 2 and 5 carbon atoms.
KingdomOrganic compounds
Super ClassOrganooxygen compounds
ClassCarbonyl compounds
Sub ClassAldehydes
Direct ParentShort-chain aldehydes
Alternative Parents
Substituents
  • Hydrocarbon derivative
  • Short-chain aldehyde
  • Aliphatic acyclic compound
Molecular FrameworkAliphatic acyclic compounds
External Descriptors
Ontology
Disposition

Route of exposure:

Source:

Biological location:

Physical Properties
StateLiquid
Experimental Properties
PropertyValueReference
Melting Point-65.9 °CNot Available
Boiling PointNot AvailableNot Available
Water Solubility89 mg/mL at 25 °CNot Available
LogPNot AvailableNot Available
Predicted Properties
PropertyValueSource
Water Solubility53.7 g/LALOGPS
logP0.6ALOGPS
logP0.86ChemAxon
logS-0.13ALOGPS
pKa (Strongest Acidic)15.62ChemAxon
pKa (Strongest Basic)-7ChemAxon
Physiological Charge0ChemAxon
Hydrogen Acceptor Count1ChemAxon
Hydrogen Donor Count0ChemAxon
Polar Surface Area17.07 ŲChemAxon
Rotatable Bond Count1ChemAxon
Refractivity20.92 m³·mol⁻¹ChemAxon
Polarizability8.24 ųChemAxon
Number of Rings0ChemAxon
Bioavailability1ChemAxon
Rule of FiveYesChemAxon
Ghose FilterYesChemAxon
Veber's RuleYesChemAxon
MDDR-like RuleYesChemAxon
Spectra
Spectrum TypeDescriptionSplash KeyView
GC-MSGC-MS Spectrum - EI-B (Non-derivatized)splash10-002f-9000000000-987cd15323d99af9f551JSpectraViewer | MoNA
GC-MSGC-MS Spectrum - EI-B (Non-derivatized)splash10-0006-9000000000-1fed4d315b146112b21eJSpectraViewer | MoNA
GC-MSGC-MS Spectrum - EI-B (Non-derivatized)splash10-002f-9000000000-987cd15323d99af9f551JSpectraViewer | MoNA
GC-MSGC-MS Spectrum - EI-B (Non-derivatized)splash10-0006-9000000000-1fed4d315b146112b21eJSpectraViewer | MoNA
Predicted GC-MSPredicted GC-MS Spectrum - GC-MS (Non-derivatized) - 70eV, Positivesplash10-0006-9000000000-dc3ff3769744ad1ee9d0JSpectraViewer | MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 10V, Positivesplash10-00di-9000000000-58d96802e35b00bb3438JSpectraViewer | MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 20V, Positivesplash10-00di-9000000000-935757dca5822bf99c59JSpectraViewer | MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 40V, Positivesplash10-052f-9000000000-70f55b8222bfdf58adb0JSpectraViewer | MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 10V, Negativesplash10-00di-9000000000-def551c4e49daf8d790bJSpectraViewer | MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 20V, Negativesplash10-00di-9000000000-db936d35c1e102f7ca97JSpectraViewer | MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 40V, Negativesplash10-0ab9-9000000000-342576c8a51a5b054f42JSpectraViewer | MoNA
MSMass Spectrum (Electron Ionization)splash10-0006-9000000000-cb6baf74480a5a4ab1edJSpectraViewer | MoNA
1D NMR1H NMR SpectrumNot AvailableJSpectraViewer
1D NMR13C NMR SpectrumNot AvailableJSpectraViewer
Biological Properties
Cellular Locations
  • Cytoplasm
  • Extracellular
Biospecimen Locations
  • Feces
Tissue LocationsNot Available
Pathways
Normal Concentrations
BiospecimenStatusValueAgeSexConditionReferenceDetails
FecesDetected but not Quantified Adult (>18 years old)Both
Normal
details
FecesDetected but not Quantified Adult (>18 years old)Both
Normal
details
FecesDetected but not Quantified Adult (>18 years old)Both
Normal
details
FecesDetected but not Quantified Adult (>18 years old)Both
Normal
details
FecesDetected but not Quantified Newborn (0-30 days old)Both
Normal
details
Abnormal Concentrations
BiospecimenStatusValueAgeSexConditionReferenceDetails
FecesDetected but not Quantified Adult (>18 years old)Both
Campylobacter jejuni infection
details
FecesDetected but not Quantified Adult (>18 years old)Both
Clostridium difficile infection
details
FecesDetected but not Quantified Adult (>18 years old)Both
Ulcerative Colitis
details
FecesDetected but not Quantified Adult (>18 years old)Both
Nonalcoholic fatty liver disease (NAFLD)
details
FecesDetected but not Quantified Adult (>18 years old)Both
Crohn's disease
details
FecesDetected but not Quantified Adult (>18 years old)Both
Ulcerative colitis
details
Associated Disorders and Diseases
Disease References
Ulcerative colitis
  1. Garner CE, Smith S, de Lacy Costello B, White P, Spencer R, Probert CS, Ratcliffe NM: Volatile organic compounds from feces and their potential for diagnosis of gastrointestinal disease. FASEB J. 2007 Jun;21(8):1675-88. Epub 2007 Feb 21. [PubMed:17314143 ]
  2. De Preter V, Machiels K, Joossens M, Arijs I, Matthys C, Vermeire S, Rutgeerts P, Verbeke K: Faecal metabolite profiling identifies medium-chain fatty acids as discriminating compounds in IBD. Gut. 2015 Mar;64(3):447-58. doi: 10.1136/gutjnl-2013-306423. Epub 2014 May 8. [PubMed:24811995 ]
Nonalcoholic fatty liver disease
  1. Raman M, Ahmed I, Gillevet PM, Probert CS, Ratcliffe NM, Smith S, Greenwood R, Sikaroodi M, Lam V, Crotty P, Bailey J, Myers RP, Rioux KP: Fecal microbiome and volatile organic compound metabolome in obese humans with nonalcoholic fatty liver disease. Clin Gastroenterol Hepatol. 2013 Jul;11(7):868-75.e1-3. doi: 10.1016/j.cgh.2013.02.015. Epub 2013 Feb 27. [PubMed:23454028 ]
Crohn's disease
  1. De Preter V, Machiels K, Joossens M, Arijs I, Matthys C, Vermeire S, Rutgeerts P, Verbeke K: Faecal metabolite profiling identifies medium-chain fatty acids as discriminating compounds in IBD. Gut. 2015 Mar;64(3):447-58. doi: 10.1136/gutjnl-2013-306423. Epub 2014 May 8. [PubMed:24811995 ]
Associated OMIM IDs
DrugBank IDNot Available
Phenol Explorer Compound IDNot Available
FoodDB IDFDB003271
KNApSAcK IDNot Available
Chemspider ID6313
KEGG Compound IDC03219
BioCyc IDCPD-7000
BiGG IDNot Available
Wikipedia LinkNot Available
METLIN IDNot Available
PubChem Compound6561
PDB IDNot Available
ChEBI ID48943
References
Synthesis ReferenceNot Available
Material Safety Data Sheet (MSDS)Not Available
General References
  1. Li J, Fu N, Li X, Luo S, Cheng JP: Chiral primary-tertiary diamine-Bronsted acid salt catalyzed syn-selective cross-aldol reaction of aldehydes. J Org Chem. 2010 Jul 2;75(13):4501-7. doi: 10.1021/jo100976e. [PubMed:20521772 ]
  2. Nugent TC, Bibi A, Sadiq A, Shoaib M, Umar MN, Tehrani FN: Chiral picolylamines for Michael and aldol reactions: probing substrate boundaries. Org Biomol Chem. 2012 Dec 14;10(46):9287-94. doi: 10.1039/c2ob26382c. Epub 2012 Oct 29. [PubMed:23104278 ]
  3. Liu LL, Li HX, Wan LM, Ren ZG, Wang HF, Lang JP: A Mn(III)-superoxo complex of a zwitterionic calix[4]arene with an unprecedented linear end-on Mn(III)-O2 arrangement and good catalytic performance for alkene epoxidation. Chem Commun (Camb). 2011 Oct 21;47(39):11146-8. doi: 10.1039/c1cc14262c. Epub 2011 Sep 2. [PubMed:21892451 ]
  4. Fowler P, Smith K, Young J, Jeffrey L, Kirkland D, Pfuhler S, Carmichael P: Reduction of misleading ("false") positive results in mammalian cell genotoxicity assays. I. Choice of cell type. Mutat Res. 2012 Feb 18;742(1-2):11-25. doi: 10.1016/j.mrgentox.2011.10.014. Epub 2011 Nov 26. [PubMed:22138618 ]
  5. Choi JH, Park DR, Park S, Song IK: Nanostructured H(3+x)PW(12-x)NbxO40 (x = 0-3) Keggin heteropolyacid catalysts. J Nanosci Nanotechnol. 2011 Sep;11(9):7870-5. [PubMed:22097499 ]
  6. Rodriguez GM, Atsumi S: Isobutyraldehyde production from Escherichia coli by removing aldehyde reductase activity. Microb Cell Fact. 2012 Jun 25;11:90. doi: 10.1186/1475-2859-11-90. [PubMed:22731523 ]
  7. de Azevedo LC, Reis MM, Pereira GE, da Rocha GO, Silva LA, de Andrade JB: A liquid chromatographic method optimization for the assessment of low and high molar mass carbonyl compounds in wines. J Sep Sci. 2009 Oct;32(20):3432-40. doi: 10.1002/jssc.200900281. [PubMed:19777456 ]
  8. Tada M, Muratsugu S, Kinoshita M, Sasaki T, Iwasawa Y: Alternative selective oxidation pathways for aldehyde oxidation and alkene epoxidation on a SiO2-supported Ru-monomer complex catalyst. J Am Chem Soc. 2010 Jan 20;132(2):713-24. doi: 10.1021/ja9079513. [PubMed:20000837 ]
  9. Choi JH, Park DR, Park S, Song IK: Scanning tunneling microscopy study of nano-structured polyatom-substituted H4PW11M1O40 Keggin and H7P2W17M1O62 (M = Nb, Ta) Wells-Dawson heteropolyacid catalysts. J Nanosci Nanotechnol. 2012 Jul;12(7):5864-9. [PubMed:22966671 ]
  10. Atsumi S, Higashide W, Liao JC: Direct photosynthetic recycling of carbon dioxide to isobutyraldehyde. Nat Biotechnol. 2009 Dec;27(12):1177-80. doi: 10.1038/nbt.1586. [PubMed:19915552 ]
  11. Carere J, Baker P, Seah SY: Investigating the molecular determinants for substrate channeling in BphI-BphJ, an aldolase-dehydrogenase complex from the polychlorinated biphenyls degradation pathway. Biochemistry. 2011 Oct 4;50(39):8407-16. doi: 10.1021/bi200960j. Epub 2011 Sep 8. [PubMed:21838275 ]
  12. Jarboe LR: YqhD: a broad-substrate range aldehyde reductase with various applications in production of biorenewable fuels and chemicals. Appl Microbiol Biotechnol. 2011 Jan;89(2):249-57. doi: 10.1007/s00253-010-2912-9. Epub 2010 Oct 6. [PubMed:20924577 ]
  13. Liu X, Bastian S, Snow CD, Brustad EM, Saleski TE, Xu JH, Meinhold P, Arnold FH: Structure-guided engineering of Lactococcus lactis alcohol dehydrogenase LlAdhA for improved conversion of isobutyraldehyde to isobutanol. J Biotechnol. 2012 Dec 15;164(2):188-95. doi: 10.1016/j.jbiotec.2012.08.008. Epub 2012 Sep 3. [PubMed:22974724 ]
  14. Lu J, Brigham CJ, Gai CS, Sinskey AJ: Studies on the production of branched-chain alcohols in engineered Ralstonia eutropha. Appl Microbiol Biotechnol. 2012 Oct;96(1):283-97. doi: 10.1007/s00253-012-4320-9. Epub 2012 Aug 4. [PubMed:22864971 ]
  15. (). Yannai, Shmuel. (2004) Dictionary of food compounds with CD-ROM: Additives, flavors, and ingredients. Boca Raton: Chapman & Hall/CRC.. .

Enzymes

General function:
Involved in oxidoreductase activity
Specific function:
NADPH-dependent reductase with broad substrate specificity. Catalyzes the reduction of a wide variety of carbonyl compounds including quinones, prostaglandins, menadione, plus various xenobiotics. Catalyzes the reduction of the antitumor anthracyclines doxorubicin and daunorubicin to the cardiotoxic compounds doxorubicinol and daunorubicinol. Can convert prostaglandin E2 to prostaglandin F2-alpha. Can bind glutathione, which explains its higher affinity for glutathione-conjugated substrates. Catalyzes the reduction of S-nitrosoglutathione.
Gene Name:
CBR1
Uniprot ID:
P16152
Molecular weight:
30374.73
Reactions
2-Methylpropanal → Isobutanoldetails