You are using an unsupported browser. Please upgrade your browser to a newer version to get the best experience on Human Metabolome Database.
Record Information
Version4.0
StatusExpected but not Quantified
Creation Date2012-09-11 17:45:57 UTC
Update Date2019-07-23 06:09:40 UTC
HMDB IDHMDB0031849
Secondary Accession Numbers
  • HMDB31849
Metabolite Identification
Common Name2-Ethylpyrazine
Description2-Ethylpyrazine is found in cereals and cereal products. 2-Ethylpyrazine is a flavouring ingredient. 2-Ethylpyrazine is present in baked or French fried potato, wheat bread, crispbread, asparagus, cocoa, coffee, black or green tea, roasted filbert, roasted peanut, soybean, shoyu, malt, cooked shrimp and cla
Structure
Data?1563862180
Synonyms
ValueSource
2-Ethyl-1,4-diazineChEBI
FEMA 3281ChEBI
FEMA no. 3281ChEBI
2-Ethyl-pyrazineHMDB
Ethyl-pyrazineHMDB
EthylpyrazineHMDB
MoldinHMDB
Chemical FormulaC6H8N2
Average Molecular Weight108.1411
Monoisotopic Molecular Weight108.068748266
IUPAC Name2-ethylpyrazine
Traditional Name2-ethyl pyrazine
CAS Registry Number13925-00-3
SMILES
CCC1=CN=CC=N1
InChI Identifier
InChI=1S/C6H8N2/c1-2-6-5-7-3-4-8-6/h3-5H,2H2,1H3
InChI KeyKVFIJIWMDBAGDP-UHFFFAOYSA-N
Chemical Taxonomy
DescriptionThis compound belongs to the class of organic compounds known as pyrazines. These are compounds containing a pyrazine ring, which is a six-member aromatic heterocycle, that consists of two nitrogen atoms (at positions 1 and 4) and four carbon atoms.
KingdomOrganic compounds
Super ClassOrganoheterocyclic compounds
ClassDiazines
Sub ClassPyrazines
Direct ParentPyrazines
Alternative Parents
Substituents
  • Pyrazine
  • Heteroaromatic compound
  • Azacycle
  • Hydrocarbon derivative
  • Organonitrogen compound
  • Aromatic heteromonocyclic compound
Molecular FrameworkAromatic heteromonocyclic compounds
External Descriptors
Ontology
Disposition

Route of exposure:

Source:

Biological location:

Role

Industrial application:

Physical Properties
StateNot Available
Experimental Properties
PropertyValueReference
Melting PointNot AvailableNot Available
Boiling PointNot AvailableNot Available
Water SolubilityNot AvailableNot Available
LogP0.69Not Available
Predicted Properties
PropertyValueSource
Water Solubility206 g/LALOGPS
logP0.87ALOGPS
logP0.37ChemAxon
logS0.28ALOGPS
pKa (Strongest Basic)1.27ChemAxon
Physiological Charge0ChemAxon
Hydrogen Acceptor Count2ChemAxon
Hydrogen Donor Count0ChemAxon
Polar Surface Area25.78 ŲChemAxon
Rotatable Bond Count1ChemAxon
Refractivity30.96 m³·mol⁻¹ChemAxon
Polarizability11.66 ųChemAxon
Number of Rings1ChemAxon
Bioavailability1ChemAxon
Rule of FiveYesChemAxon
Ghose FilterYesChemAxon
Veber's RuleYesChemAxon
MDDR-like RuleYesChemAxon
Spectra
Spectrum TypeDescriptionSplash KeyView
GC-MSGC-MS Spectrum - EI-B (Non-derivatized)splash10-0a4i-9700000000-f6a542b90b45a0c8ac2dJSpectraViewer | MoNA
GC-MSGC-MS Spectrum - EI-B (Non-derivatized)splash10-0a4i-9700000000-f6a542b90b45a0c8ac2dJSpectraViewer | MoNA
Predicted GC-MSPredicted GC-MS Spectrum - GC-MS (Non-derivatized) - 70eV, Positivesplash10-0apl-9200000000-25b4ee3d8e2ba3fc07ccJSpectraViewer | MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 10V, Positivesplash10-0a4i-0900000000-3524228f918635f67c86JSpectraViewer | MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 20V, Positivesplash10-0a4i-2900000000-21aac0dee54f62a0c194JSpectraViewer | MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 40V, Positivesplash10-0udl-9000000000-272487c72d5e01923b92JSpectraViewer | MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 10V, Negativesplash10-0a4i-0900000000-c5a08a210c001d84b6faJSpectraViewer | MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 20V, Negativesplash10-0a4i-1900000000-d64b8d4f12c29a9cfab6JSpectraViewer | MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 40V, Negativesplash10-0zi0-9100000000-3323ef05a3b140f4267dJSpectraViewer | MoNA
MSMass Spectrum (Electron Ionization)splash10-0a4i-8900000000-2b2fb4b75d5a265c3701JSpectraViewer | MoNA
1D NMR1H NMR SpectrumNot AvailableJSpectraViewer
1D NMR13C NMR SpectrumNot AvailableJSpectraViewer
Biological Properties
Cellular Locations
  • Cytoplasm
  • Extracellular
Biospecimen LocationsNot Available
Tissue LocationsNot Available
Pathways
Normal Concentrations
Not Available
Abnormal Concentrations
Not Available
Associated Disorders and Diseases
Disease ReferencesNone
Associated OMIM IDsNone
DrugBank IDNot Available
Phenol Explorer Compound IDNot Available
FoodDB IDFDB008533
KNApSAcK IDNot Available
Chemspider ID24533
KEGG Compound IDNot Available
BioCyc IDNot Available
BiGG IDNot Available
Wikipedia LinkNot Available
METLIN IDNot Available
PubChem Compound26331
PDB IDNot Available
ChEBI ID73232
Food Biomarker OntologyNot Available
VMH IDNot Available
References
Synthesis ReferenceNot Available
Material Safety Data Sheet (MSDS)Not Available
General References
  1. Rappert S, Li R, Kokova M, Antholz M, Nagorny S, Francke W, Muller R: Degradation of 2,5-dimethylpyrazine by Rhodococcus erythropolis strain DP-45 isolated from a waste gas treatment plant of a fishmeal processing company. Biodegradation. 2007 Oct;18(5):585-96. Epub 2006 Nov 22. [PubMed:17120096 ]
  2. Melkonian G, Eckelhoefer H, Wu M, Wang Y, Tong C, Riveles K, Talbot P: Growth and angiogenesis are inhibited in vivo in developing tissues by pyrazine and its derivatives. Toxicol Sci. 2003 Oct;75(2):393-401. Epub 2003 May 28. [PubMed:12773771 ]
  3. Fan W, Qian MC: Characterization of aroma compounds of chinese "Wuliangye" and "Jiannanchun" liquors by aroma extract dilution analysis. J Agric Food Chem. 2006 Apr 5;54(7):2695-704. [PubMed:16569063 ]
  4. Shu CK: Pyrazine formation from serine and threonine. J Agric Food Chem. 1999 Oct;47(10):4332-5. [PubMed:10552811 ]
  5. Jung MY, Bock JY, Baik SO, Lee JH, Lee TK: Effects of roasting on pyrazine contents and oxidative stability of red pepper seed oil prior to its extraction. J Agric Food Chem. 1999 Apr;47(4):1700-4. [PubMed:10564041 ]
  6. Jess I, Nather C: Investigations on the synthesis, structures, and properties of new copper(I) 2,3-dimethylpyrazine coordination compounds. Inorg Chem. 2006 Sep 4;45(18):7446-54. [PubMed:16933949 ]
  7. Counet C, Callemien D, Ouwerx C, Collin S: Use of gas chromatography-olfactometry to identify key odorant compounds in dark chocolate. Comparison of samples before and after conching. J Agric Food Chem. 2002 Apr 10;50(8):2385-91. [PubMed:11929301 ]
  8. Montague SA, Mathew D, Carlson JR: Similar odorants elicit different behavioral and physiological responses, some supersustained. J Neurosci. 2011 May 25;31(21):7891-9. doi: 10.1523/JNEUROSCI.6254-10.2011. [PubMed:21613503 ]
  9. Piccone P, Lonzarich V, Navarini L, Fusella G, Pittia P: Effect of sugars on liquid-vapour partition of volatile compounds in ready-to-drink coffee beverages. J Mass Spectrom. 2012 Sep;47(9):1120-31. doi: 10.1002/jms.3073. [PubMed:22972780 ]
  10. Qian M, Reineccius G: Identification of aroma compounds in Parmigiano-Reggiano cheese by gas chromatography/olfactometry. J Dairy Sci. 2002 Jun;85(6):1362-9. [PubMed:12146465 ]
  11. Le Guen S, Prost C, Demaimay M: Critical comparison of three olfactometric methods for the identification of the most potent odorants in cooked mussels (Mytilus edulis). J Agric Food Chem. 2000 Apr;48(4):1307-14. [PubMed:10775390 ]
  12. Morais VM, Miranda MS, Matos MA: Thermochemical study of the ethylpyridine and ethylpyrazine isomers. Org Biomol Chem. 2003 Dec 7;1(23):4329-34. Epub 2003 Oct 27. [PubMed:14685337 ]
  13. (). Yannai, Shmuel. (2004) Dictionary of food compounds with CD-ROM: Additives, flavors, and ingredients. Boca Raton: Chapman & Hall/CRC.. .