| Record Information |
|---|
| Version | 5.0 |
|---|
| Status | Expected but not Quantified |
|---|
| Creation Date | 2012-09-11 21:10:46 UTC |
|---|
| Update Date | 2023-02-21 17:25:05 UTC |
|---|
| HMDB ID | HMDB0036113 |
|---|
| Secondary Accession Numbers | |
|---|
| Metabolite Identification |
|---|
| Common Name | (+)-3-Thujone |
|---|
| Description | (+)-3-Thujone, also known as beta-thujone or β-thujone, belongs to the class of organic compounds known as bicyclic monoterpenoids. These are monoterpenoids containing exactly 2 rings, which are fused to each other. Thus, (+)-3-thujone is considered to be an isoprenoid. Based on a literature review a significant number of articles have been published on (+)-3-Thujone. |
|---|
| Structure | CC(C)[C@@]12C[C@@H]1[C@H](C)C(=O)C2 InChI=1S/C10H16O/c1-6(2)10-4-8(10)7(3)9(11)5-10/h6-8H,4-5H2,1-3H3/t7-,8+,10-/m0/s1 |
|---|
| Synonyms | | Value | Source |
|---|
| (+)-Isothujone | ChEBI | | (1S,4S,5R)-(+)-3-Thujanone | ChEBI | | (1S,4S,5R)-1-Isopropyl-4-methylbicyclo[3.1.0]hexan-3-one | ChEBI | | [1S-(1alpha,4beta,5alpha)]-4-Methyl-1-(1-methylethyl)bicyclo[3.1.0]hexan-3-one | ChEBI | | beta-Thujone | ChEBI | | D-beta-Thujone | ChEBI | | D-Isothujone | ChEBI | | trans-Thujone | ChEBI | | [1S-(1a,4b,5a)]-4-Methyl-1-(1-methylethyl)bicyclo[3.1.0]hexan-3-one | Generator | | [1S-(1Α,4β,5α)]-4-methyl-1-(1-methylethyl)bicyclo[3.1.0]hexan-3-one | Generator | | b-Thujone | Generator | | Β-thujone | Generator | | D-b-Thujone | Generator | | D-Β-thujone | Generator | | (+)-b-Thujone | HMDB, Generator | | (+)-beta-Thujone | HMDB | | (+)-cis-Thujone | HMDB | | (+)-Thujone | HMDB | | -Thujone | HMDB | | D-beta | HMDB | | Isothujone | HMDB | | (+)-3-Thujone | ChEBI | | (+)-Β-thujone | Generator | | alpha-Thujone | MeSH | | cis-Thujone | MeSH | | Thujone | MeSH | | (-)-Thujone | MeSH | | 3-Isothujone | MeSH | | 3-Thujanone | MeSH | | beta-Thujone, 1S-(1alpha,4beta,5alpha)-isomer | MeSH | | alpha, beta-Thujone | MeSH | | beta-Thujone, (1S-(1alpha,4alpha,5alpha))-isomer | MeSH | | beta-Thujone, (1alpha,4alpha,5alpha)-isomer | MeSH |
|
|---|
| Chemical Formula | C10H16O |
|---|
| Average Molecular Weight | 152.2334 |
|---|
| Monoisotopic Molecular Weight | 152.120115134 |
|---|
| IUPAC Name | (1S,4S,5R)-4-methyl-1-(propan-2-yl)bicyclo[3.1.0]hexan-3-one |
|---|
| Traditional Name | (+)-β-thujone |
|---|
| CAS Registry Number | 471-15-8 |
|---|
| SMILES | CC(C)[C@@]12C[C@@H]1[C@H](C)C(=O)C2 |
|---|
| InChI Identifier | InChI=1S/C10H16O/c1-6(2)10-4-8(10)7(3)9(11)5-10/h6-8H,4-5H2,1-3H3/t7-,8+,10-/m0/s1 |
|---|
| InChI Key | USMNOWBWPHYOEA-XKSSXDPKSA-N |
|---|
| Chemical Taxonomy |
|---|
| Description | Belongs to the class of organic compounds known as bicyclic monoterpenoids. These are monoterpenoids containing exactly 2 rings, which are fused to each other. |
|---|
| Kingdom | Organic compounds |
|---|
| Super Class | Lipids and lipid-like molecules |
|---|
| Class | Prenol lipids |
|---|
| Sub Class | Monoterpenoids |
|---|
| Direct Parent | Bicyclic monoterpenoids |
|---|
| Alternative Parents | |
|---|
| Substituents | - Bicyclic monoterpenoid
- Thujane monoterpenoid
- Cyclic ketone
- Ketone
- Organic oxygen compound
- Organic oxide
- Hydrocarbon derivative
- Organooxygen compound
- Carbonyl group
- Aliphatic homopolycyclic compound
|
|---|
| Molecular Framework | Aliphatic homopolycyclic compounds |
|---|
| External Descriptors | |
|---|
| Ontology |
|---|
| Physiological effect | Not Available |
|---|
| Disposition | |
|---|
| Process | |
|---|
| Role | |
|---|
| Physical Properties |
|---|
| State | Not Available |
|---|
| Experimental Molecular Properties | | Property | Value | Reference |
|---|
| Melting Point | Not Available | Not Available | | Boiling Point | Not Available | Not Available | | Water Solubility | 407.7 mg/L @ 25 °C (est) | The Good Scents Company Information System | | LogP | Not Available | Not Available |
|
|---|
| Experimental Chromatographic Properties | Not Available |
|---|
| Predicted Molecular Properties | |
|---|
| Predicted Chromatographic Properties | Predicted Collision Cross SectionsPredicted Retention Times Underivatized| Chromatographic Method | Retention Time | Reference |
|---|
| Measured using a Waters Acquity ultraperformance liquid chromatography (UPLC) ethylene-bridged hybrid (BEH) C18 column (100 mm × 2.1 mm; 1.7 μmparticle diameter). Predicted by Afia on May 17, 2022. Predicted by Afia on May 17, 2022. | 4.28 minutes | 32390414 | | Predicted by Siyang on May 30, 2022 | 15.0176 minutes | 33406817 | | Predicted by Siyang using ReTip algorithm on June 8, 2022 | 2.13 minutes | 32390414 | | Fem_Long = Waters ACQUITY UPLC HSS T3 C18 with Water:MeOH and 0.1% Formic Acid | 2041.6 seconds | 40023050 | | Fem_Lipids = Ascentis Express C18 with (60:40 water:ACN):(90:10 IPA:ACN) and 10mM NH4COOH + 0.1% Formic Acid | 518.1 seconds | 40023050 | | Life_Old = Waters ACQUITY UPLC BEH C18 with Water:(20:80 acetone:ACN) and 0.1% Formic Acid | 185.0 seconds | 40023050 | | Life_New = RP Waters ACQUITY UPLC HSS T3 C18 with Water:(30:70 MeOH:ACN) and 0.1% Formic Acid | 299.6 seconds | 40023050 | | RIKEN = Waters ACQUITY UPLC BEH C18 with Water:ACN and 0.1% Formic Acid | 306.2 seconds | 40023050 | | Eawag_XBridgeC18 = XBridge C18 3.5u 2.1x50 mm with Water:MeOH and 0.1% Formic Acid | 579.8 seconds | 40023050 | | BfG_NTS_RP1 =Agilent Zorbax Eclipse Plus C18 (2.1 mm x 150 mm, 3.5 um) with Water:ACN and 0.1% Formic Acid | 674.2 seconds | 40023050 | | HILIC_BDD_2 = Merck SeQuant ZIC-HILIC with ACN(0.1% formic acid):water(16 mM ammonium formate) | 81.2 seconds | 40023050 | | UniToyama_Atlantis = RP Waters Atlantis T3 (2.1 x 150 mm, 5 um) with ACN:Water and 0.1% Formic Acid | 1121.7 seconds | 40023050 | | BDD_C18 = Hypersil Gold 1.9µm C18 with Water:ACN and 0.1% Formic Acid | 408.4 seconds | 40023050 | | UFZ_Phenomenex = Kinetex Core-Shell C18 2.6 um, 3.0 x 100 mm, Phenomenex with Water:MeOH and 0.1% Formic Acid | 1338.9 seconds | 40023050 | | SNU_RIKEN_POS = Waters ACQUITY UPLC BEH C18 with Water:ACN and 0.1% Formic Acid | 346.3 seconds | 40023050 | | RPMMFDA = Waters ACQUITY UPLC BEH C18 with Water:ACN and 0.1% Formic Acid | 385.1 seconds | 40023050 | | MTBLS87 = Merck SeQuant ZIC-pHILIC column with ACN:Water and :ammonium carbonate | 383.1 seconds | 40023050 | | KI_GIAR_zic_HILIC_pH2_7 = Merck SeQuant ZIC-HILIC with ACN:Water and 0.1% FA | 445.3 seconds | 40023050 | | Meister zic-pHILIC pH9.3 = Merck SeQuant ZIC-pHILIC column with ACN:Water 5mM NH4Ac pH9.3 and 5mM ammonium acetate in water | 24.1 seconds | 40023050 |
Predicted Kovats Retention IndicesUnderivatizedDerivatized| Derivative Name / Structure | SMILES | Kovats RI Value | Column Type | Reference |
|---|
| (+)-3-Thujone,1TMS,isomer #1 | CC1=C(O[Si](C)(C)C)C[C@]2(C(C)C)C[C@H]12 | 1290.3 | Semi standard non polar | 33892256 | | (+)-3-Thujone,1TMS,isomer #1 | CC1=C(O[Si](C)(C)C)C[C@]2(C(C)C)C[C@H]12 | 1341.1 | Standard non polar | 33892256 | | (+)-3-Thujone,1TMS,isomer #2 | CC(C)[C@]12C=C(O[Si](C)(C)C)[C@@H](C)[C@H]1C2 | 1220.7 | Semi standard non polar | 33892256 | | (+)-3-Thujone,1TMS,isomer #2 | CC(C)[C@]12C=C(O[Si](C)(C)C)[C@@H](C)[C@H]1C2 | 1300.1 | Standard non polar | 33892256 | | (+)-3-Thujone,1TBDMS,isomer #1 | CC1=C(O[Si](C)(C)C(C)(C)C)C[C@]2(C(C)C)C[C@H]12 | 1520.9 | Semi standard non polar | 33892256 | | (+)-3-Thujone,1TBDMS,isomer #1 | CC1=C(O[Si](C)(C)C(C)(C)C)C[C@]2(C(C)C)C[C@H]12 | 1549.2 | Standard non polar | 33892256 | | (+)-3-Thujone,1TBDMS,isomer #2 | CC(C)[C@]12C=C(O[Si](C)(C)C(C)(C)C)[C@@H](C)[C@H]1C2 | 1436.0 | Semi standard non polar | 33892256 | | (+)-3-Thujone,1TBDMS,isomer #2 | CC(C)[C@]12C=C(O[Si](C)(C)C(C)(C)C)[C@@H](C)[C@H]1C2 | 1487.2 | Standard non polar | 33892256 |
|
|---|
| General References | - Jug-Dujakovic M, Ristic M, Pljevljakusic D, Dajic-Stevanovic Z, Liber Z, Hancevic K, Radic T, Satovic Z: High diversity of indigenous populations of dalmatian sage (Salvia officinalis L.) in essential-oil composition. Chem Biodivers. 2012 Oct;9(10):2309-23. doi: 10.1002/cbdv.201200131. [PubMed:23081929 ]
- Walch SG, Lachenmeier DW, Kuballa T, Stuhlinger W, Monakhova YB: Holistic Control of Herbal Teas and Tinctures Based on Sage (Salvia officinalis L.) for Compounds with Beneficial and Adverse Effects using NMR Spectroscopy. Anal Chem Insights. 2012;7:1-12. doi: 10.4137/ACI.S8946. Epub 2012 Mar 21. [PubMed:22493561 ]
- Satyal P, Paudel P, Kafle A, Pokharel SK, Lamichhane B, Dosoky NS, Moriarity DM, Setzer WN: Bioactivities of volatile components from Nepalese Artemisia species. Nat Prod Commun. 2012 Dec;7(12):1651-8. [PubMed:23413575 ]
- Rice KC, Wilson RS: (-)-3-Isothujone, a small nonnitrogenous molecule with antinociceptive activity in mice. J Med Chem. 1976 Aug;19(8):1054-7. [PubMed:966252 ]
- Wise ML, Savage TJ, Katahira E, Croteau R: Monoterpene synthases from common sage (Salvia officinalis). cDNA isolation, characterization, and functional expression of (+)-sabinene synthase, 1,8-cineole synthase, and (+)-bornyl diphosphate synthase. J Biol Chem. 1998 Jun 12;273(24):14891-9. [PubMed:9614092 ]
- Haider SZ, Andola HC, Mohan M: Constituents of Artemisia gmelinii Weber ex Stechm. from Uttarakhand Himalaya: A Source of Artemisia Ketone. Indian J Pharm Sci. 2012 May;74(3):265-7. doi: 10.4103/0250-474X.106074. [PubMed:23439844 ]
- Santos-Gomes PC, Fernandes-Ferreira M: Essential oils produced by in vitro shoots of sage (Salvia officinalis L.). J Agric Food Chem. 2003 Apr 9;51(8):2260-6. [PubMed:12670167 ]
- Dehal SS, Croteau R: Metabolism of monoterpenes: specificity of the dehydrogenases responsible for the biosynthesis of camphor, 3-thujone, and 3-isothujone. Arch Biochem Biophys. 1987 Oct;258(1):287-91. [PubMed:3310901 ]
- Kolassa N: Menthol differs from other terpenic essential oil constituents. Regul Toxicol Pharmacol. 2013 Feb;65(1):115-8. doi: 10.1016/j.yrtph.2012.11.009. Epub 2012 Dec 1. [PubMed:23207345 ]
- Tayade AB, Dhar P, Kumar J, Sharma M, Chauhan RS, Chaurasia OP, Srivastava RB: Chemometric profile of root extracts of Rhodiola imbricata Edgew. with hyphenated gas chromatography mass spectrometric technique. PLoS One. 2013;8(1):e52797. doi: 10.1371/journal.pone.0052797. Epub 2013 Jan 10. [PubMed:23326358 ]
- Raut JS, Shinde RB, Chauhan NM, Karuppayil SM: Terpenoids of plant origin inhibit morphogenesis, adhesion, and biofilm formation by Candida albicans. Biofouling. 2013;29(1):87-96. doi: 10.1080/08927014.2012.749398. [PubMed:23216018 ]
- Simons K, Toomre D: Lipid rafts and signal transduction. Nat Rev Mol Cell Biol. 2000 Oct;1(1):31-9. [PubMed:11413487 ]
- Watson AD: Thematic review series: systems biology approaches to metabolic and cardiovascular disorders. Lipidomics: a global approach to lipid analysis in biological systems. J Lipid Res. 2006 Oct;47(10):2101-11. Epub 2006 Aug 10. [PubMed:16902246 ]
- Sethi JK, Vidal-Puig AJ: Thematic review series: adipocyte biology. Adipose tissue function and plasticity orchestrate nutritional adaptation. J Lipid Res. 2007 Jun;48(6):1253-62. Epub 2007 Mar 20. [PubMed:17374880 ]
- Lingwood D, Simons K: Lipid rafts as a membrane-organizing principle. Science. 2010 Jan 1;327(5961):46-50. doi: 10.1126/science.1174621. [PubMed:20044567 ]
- (). Yannai, Shmuel. (2004) Dictionary of food compounds with CD-ROM: Additives, flavors, and ingredients. Boca Raton: Chapman & Hall/CRC.. .
- Gunstone, Frank D., John L. Harwood, and Albert J. Dijkstra (2007). The lipid handbook with CD-ROM. CRC Press.
|
|---|