You are using an unsupported browser. Please upgrade your browser to a newer version to get the best experience on Human Metabolome Database.
Record Information
Version3.6
Creation Date2005-11-16 15:48:42 UTC
Update Date2016-02-11 01:04:48 UTC
HMDB IDHMDB01487
Secondary Accession NumbersNone
Metabolite Identification
Common NameNADH
DescriptionNADH is the reduced form of NAD+, and NAD+ is the oxidized form of NADH, A coenzyme composed of ribosylnicotinamide 5'-diphosphate coupled to adenosine 5'-phosphate by pyrophosphate linkage. It is found widely in nature and is involved in numerous enzymatic reactions in which it serves as an electron carrier by being alternately oxidized (NAD+) and reduced (NADH). It forms NADP with the addition of a phosphate group to the 2' position of the adenosyl nucleotide through an ester linkage.(Dorland, 27th ed).
Structure
Thumb
Synonyms
  1. 1,4-Dihydronicotinamide adenine dinucleotide
  2. b-DPNH
  3. b-NADH
  4. beta-DPNH
  5. beta-NADH
  6. Dihydrocodehydrogenase I
  7. Dihydrocozymase
  8. Dihydronicotinamide adenine dinucleotide
  9. Dihydronicotinamide mononucleotide
  10. DPNH
  11. ENADA
  12. NADH
  13. NADH2
  14. Reduced codehydrogenase I
  15. Reduced diphosphopyridine nucleotide
  16. Reduced nicotinamide adenine diphosphate
  17. Reduced nicotinamide-adenine dinucleotide
Chemical FormulaC21H29N7O14P2
Average Molecular Weight665.441
Monoisotopic Molecular Weight665.124771695
IUPAC Name[({[(2R,3S,4R,5R)-5-(6-amino-9H-purin-9-yl)-3,4-dihydroxyoxolan-2-yl]methoxy}(hydroxy)phosphoryl)oxy]({[(2R,3S,4R,5R)-5-(3-carbamoyl-1,4-dihydropyridin-1-yl)-3,4-dihydroxyoxolan-2-yl]methoxy})phosphinic acid
Traditional NameNADH
CAS Registry Number58-68-4
SMILES
NC(=O)C1=CN(C=CC1)[C@@H]1O[C@H](CO[P@](O)(=O)O[P@](O)(=O)OC[C@H]2O[C@H]([C@H](O)[C@@H]2O)N2C=NC3=C(N)N=CN=C23)[C@@H](O)[C@H]1O
InChI Identifier
InChI=1S/C21H29N7O14P2/c22-17-12-19(25-7-24-17)28(8-26-12)21-16(32)14(30)11(41-21)6-39-44(36,37)42-43(34,35)38-5-10-13(29)15(31)20(40-10)27-3-1-2-9(4-27)18(23)33/h1,3-4,7-8,10-11,13-16,20-21,29-32H,2,5-6H2,(H2,23,33)(H,34,35)(H,36,37)(H2,22,24,25)/t10-,11-,13-,14-,15-,16-,20-,21-/m1/s1
InChI KeyInChIKey=BOPGDPNILDQYTO-NNYOXOHSSA-N
Chemical Taxonomy
DescriptionThis compound belongs to the class of organic compounds known as (5'->5')-dinucleotides. These are dinucleotides where the two bases are connected via a (5'->5')-phosphodiester linkage.
KingdomOrganic compounds
Super ClassNucleosides, nucleotides, and analogues
Class(5'->5')-dinucleotides
Sub ClassNot Available
Direct Parent(5'->5')-dinucleotides
Alternative Parents
Substituents
  • (5'->5')-dinucleotide
  • Purine nucleotide sugar
  • Purine ribonucleoside diphosphate
  • Nicotinamide-nucleotide
  • N-glycosyl compound
  • Glycosyl compound
  • Organic pyrophosphate
  • N-substituted nicotinamide
  • Monosaccharide phosphate
  • 6-aminopurine
  • Purine
  • Imidazopyrimidine
  • Dihydropyridinecarboxylic acid derivative
  • Monoalkyl phosphate
  • Dihydropyridine
  • Aminopyrimidine
  • Imidolactam
  • Alkyl phosphate
  • Pyrimidine
  • Primary aromatic amine
  • Phosphoric acid ester
  • Organic phosphoric acid derivative
  • Organic phosphate
  • N-substituted imidazole
  • Monosaccharide
  • Hydropyridine
  • Saccharide
  • Heteroaromatic compound
  • Oxolane
  • Imidazole
  • Azole
  • Tertiary amine
  • Secondary alcohol
  • 1,2-diol
  • Oxacycle
  • Azacycle
  • Organoheterocyclic compound
  • Enamine
  • Carboximidic acid derivative
  • Carboximidic acid
  • Hydrocarbon derivative
  • Primary amine
  • Organooxygen compound
  • Organonitrogen compound
  • Amine
  • Alcohol
  • Aromatic heteropolycyclic compound
Molecular FrameworkAromatic heteropolycyclic compounds
External Descriptors
Ontology
StatusDetected and Quantified
Origin
  • Endogenous
Biofunction
  • Component of Aminosugars metabolism
  • Component of Arginine and proline metabolism
  • Component of Ascorbate and aldarate metabolism
  • Component of Bile acid biosynthesis
  • Component of Butanoate metabolism
  • Component of Cysteine metabolism
  • Component of Fatty acid metabolism
  • Component of Fructose and mannose metabolism
  • Component of Glutamate metabolism
  • Component of Glycerolipid metabolism
  • Component of Glycerophospholipid metabolism
  • Component of Glycine, serine and threonine metabolism
  • Component of Glyoxylate and dicarboxylate metabolism
  • Component of Histidine metabolism
  • Component of Inositol metabolism
  • Component of Methane metabolism
  • Component of Nicotinate and nicotinamide metabolism
  • Component of Nucleotide sugars metabolism
  • Component of Propanoate metabolism
  • Component of Purine metabolism
  • Component of Pyruvate metabolism
  • Component of Retinol metabolism
  • Component of Starch and sucrose metabolism
  • Component of Tryptophan metabolism
  • Component of Tyrosine metabolism
  • Component of Ubiquinone biosynthesis
  • Component of beta-Alanine metabolism
ApplicationNot Available
Cellular locations
  • Mitochondria
  • Endoplasmic reticulum
  • Peroxisome
Physical Properties
StateSolid
Experimental Properties
PropertyValueReference
Melting Point140.0 - 142.0 °CNot Available
Boiling PointNot AvailableNot Available
Water SolubilityNot AvailableNot Available
LogPNot AvailableNot Available
Predicted Properties
PropertyValueSource
Water Solubility2.95 mg/mLALOGPS
logP-1.4ALOGPS
logP-6.5ChemAxon
logS-2.4ALOGPS
pKa (Strongest Acidic)-7ChemAxon
pKa (Strongest Basic)5ChemAxon
Physiological Charge-2ChemAxon
Hydrogen Acceptor Count16ChemAxon
Hydrogen Donor Count8ChemAxon
Polar Surface Area317.62 Å2ChemAxon
Rotatable Bond Count11ChemAxon
Refractivity143 m3·mol-1ChemAxon
Polarizability57.65 Å3ChemAxon
Number of Rings5ChemAxon
Bioavailability0ChemAxon
Rule of FiveYesChemAxon
Ghose FilterYesChemAxon
Veber's RuleYesChemAxon
MDDR-like RuleYesChemAxon
Spectra
Spectra
Spectrum TypeDescriptionSplash Key
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 10V, Positivesplash10-0zc350g000-bf6579d19ee9bc297e13View in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 20V, Positivesplash10-1z36101000-92672b1d4b96838f8652View in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 40V, Positivesplash10-4z30100000-ef56d203da65089e145fView in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 10V, Negativesplash10-3z02b3t000-f248eb28a7283de7118bView in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 20V, Negativesplash10-5z13501000-efadf1d6c54e9e86671dView in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 40V, Negativesplash10-ez03000000-f258fc2bf1d8e54ac6daView in MoNA
Biological Properties
Cellular Locations
  • Mitochondria
  • Endoplasmic reticulum
  • Peroxisome
Biofluid Locations
  • Blood
Tissue Location
  • Bladder
  • Brain
  • Fibroblasts
  • Muscle
  • Platelet
Pathways
NameSMPDB LinkKEGG Link
11-beta-hydroxylase deficiency (CYP11B1)SMP00575Not Available
17-alpha-hydroxylase deficiency (CYP17)SMP00566Not Available
17-Beta Hydroxysteroid Dehydrogenase III DeficiencySMP00356Not Available
2-aminoadipic 2-oxoadipic aciduriaSMP00719Not Available
2-Hydroxyglutric Aciduria (D And L Form)SMP00136Not Available
2-ketoglutarate dehydrogenase complex deficiencySMP00549Not Available
2-Methyl-3-Hydroxybutryl CoA Dehydrogenase DeficiencySMP00137Not Available
21-hydroxylase deficiency (CYP21)SMP00576Not Available
27-Hydroxylase DeficiencySMP00720Not Available
3-Beta-Hydroxysteroid Dehydrogenase DeficiencySMP00718Not Available
3-Hydroxy-3-Methylglutaryl-CoA Lyase DeficiencySMP00138Not Available
3-hydroxyisobutyric acid dehydrogenase deficiencySMP00521Not Available
3-hydroxyisobutyric aciduriaSMP00522Not Available
3-Methylcrotonyl Coa Carboxylase Deficiency Type ISMP00237Not Available
3-Methylglutaconic Aciduria Type ISMP00139Not Available
3-Methylglutaconic Aciduria Type IIISMP00140Not Available
3-Methylglutaconic Aciduria Type IVSMP00141Not Available
3-Phosphoglycerate dehydrogenase deficiencySMP00721Not Available
4-Hydroxybutyric Aciduria/Succinic Semialdehyde Dehydrogenase DeficiencySMP00243Not Available
Acetaminophen Metabolism PathwaySMP00640Not Available
Acute Intermittent PorphyriaSMP00344Not Available
Adenine phosphoribosyltransferase deficiency (APRT)SMP00535Not Available
Adenosine Deaminase DeficiencySMP00144Not Available
Adenylosuccinate Lyase DeficiencySMP00167Not Available
Adrenal Hyperplasia Type 3 or Congenital Adrenal Hyperplasia due to 21-hydroxylase DeficiencySMP00373Not Available
Adrenal Hyperplasia Type 5 or Congenital Adrenal Hyperplasia due to 17 Alpha-hydroxylase DeficiencySMP00372Not Available
AICA-RibosiduriaSMP00168Not Available
AlkaptonuriaSMP00169Not Available
Ammonia RecyclingSMP00009map00910
Androgen and Estrogen MetabolismSMP00068map00150
Apparent mineralocorticoid excess syndromeSMP00717Not Available
Arginine and Proline MetabolismSMP00020map00330
Arginine: Glycine Amidinotransferase Deficiency (AGAT Deficiency)SMP00362Not Available
ArgininemiaSMP00357Not Available
Argininosuccinic AciduriaSMP00003Not Available
Aromatase deficiencySMP00565Not Available
Artemether Metabolism PathwaySMP00651Not Available
Azathioprine PathwaySMP00427Not Available
Beta-Alanine MetabolismSMP00007map00410
Beta-Ketothiolase DeficiencySMP00173Not Available
Beta-mercaptolactate-cysteine disulfiduriaSMP00499Not Available
Betaine MetabolismSMP00123map00260
Bile Acid BiosynthesisSMP00035map00120
Butyrate MetabolismSMP00073map00650
Caffeine MetabolismSMP00028map00232
Carbamazepine Metabolism PathwaySMP00634Not Available
Carbamoyl Phosphate Synthetase DeficiencySMP00002Not Available
Carnitine palmitoyl transferase deficiency (I)SMP00538Not Available
Carnitine palmitoyl transferase deficiency (II)SMP00541Not Available
Carnitine SynthesisSMP00465Not Available
Carnosinuria, carnosinemiaSMP00493Not Available
Cerebrotendinous Xanthomatosis (CTX)SMP00315Not Available
Citalopram Metabolism PathwaySMP00627Not Available
Citalopram PathwaySMP00424Not Available
Citric Acid CycleSMP00057map00020
Citrullinemia Type ISMP00001Not Available
Clomipramine Metabolism PathwaySMP00639Not Available
Codeine Metabolism PathwaySMP00621Not Available
Codeine PathwaySMP00405Not Available
Congenital Bile Acid Synthesis Defect Type IISMP00314Not Available
Congenital Bile Acid Synthesis Defect Type IIISMP00318Not Available
Congenital Erythropoietic Porphyria (CEP) or Gunther DiseaseSMP00345Not Available
Congenital lactic acidosisSMP00546Not Available
Congenital Lipoid Adrenal Hyperplasia (CLAH) or Lipoid CAHSMP00371Not Available
Corticosterone methyl oxidase I deficiency (CMO I)SMP00577Not Available
Corticosterone methyl oxidase II deficiency - CMO IISMP00578Not Available
Creatine deficiency, guanidinoacetate methyltransferase deficiencySMP00504Not Available
Cyclophosphamide Metabolism PathwaySMP00604Not Available
Cyclophosphamide PathwaySMP00447Not Available
Cystathionine Beta-Synthase DeficiencySMP00177Not Available
Cysteine MetabolismSMP00013map00270
Cystinosis, ocular nonnephropathicSMP00722Not Available
D-glyceric aciduraSMP00529Not Available
Dihydropyrimidine Dehydrogenase Deficiency (DHPD)SMP00179Not Available
Dimethylglycine Dehydrogenase DeficiencySMP00242Not Available
Dimethylglycine Dehydrogenase DeficiencySMP00484Not Available
Disulfiram PathwaySMP00429Not Available
Dopa-responsive dystoniaSMP00486Not Available
Dopamine beta-hydroxylase deficiencySMP00498Not Available
Doxepin Metabolism PathwaySMP00641Not Available
Doxorubicin Metabolism PathwaySMP00650Not Available
Ethanol DegradationSMP00449Not Available
Ethylmalonic EncephalopathySMP00181Not Available
Etoposide Metabolism PathwaySMP00601Not Available
Etoposide PathwaySMP00442Not Available
Familial Hypercholanemia (FHCA)SMP00317Not Available
Familial lipoprotein lipase deficiencySMP00530Not Available
Fanconi-bickel syndromeSMP00572Not Available
Fatty Acid Elongation In MitochondriaSMP00054map00062
Fatty acid MetabolismSMP00051map00071
Felbamate Metabolism PathwaySMP00633Not Available
Fluoxetine Metabolism PathwaySMP00646Not Available
Fluoxetine PathwaySMP00426Not Available
Folate malabsorption, hereditarySMP00724Not Available
Folate MetabolismSMP00053map00670
Fructose and Mannose DegradationSMP00064map00051
Fructose intolerance, hereditarySMP00725Not Available
Fructose-1,6-diphosphatase deficiencySMP00562Not Available
FructosuriaSMP00561Not Available
Fumarase deficiencySMP00547Not Available
GABA-Transaminase DeficiencySMP00351Not Available
Galactose MetabolismSMP00043map00052
GalactosemiaSMP00182Not Available
Galactosemia II (GALK)SMP00495Not Available
Galactosemia IIISMP00496Not Available
GluconeogenesisSMP00128map00010
Glucose-Alanine CycleSMP00127Not Available
Glutamate MetabolismSMP00072map00250
Glutaminolysis and CancerSMP02298Not Available
Glutaric Aciduria Type ISMP00185Not Available
Glutaric Aciduria Type ISMP00186Not Available
Glycerol Kinase DeficiencySMP00187Not Available
Glycerol Phosphate ShuttleSMP00124Not Available
Glycerolipid MetabolismSMP00039map00561
Glycine and Serine MetabolismSMP00004map00260
Glycine N-methyltransferase DeficiencySMP00222Not Available
Glycogen Storage Disease Type 1A (GSD1A) or Von Gierke DiseaseSMP00374Not Available
Glycogen synthetase deficiencySMP00552Not Available
Glycogenosis, Type IA. Von gierke diseaseSMP00581Not Available
Glycogenosis, Type IBSMP00573Not Available
Glycogenosis, Type ICSMP00574Not Available
Glycogenosis, Type III. Cori disease, Debrancher glycogenosisSMP00553Not Available
Glycogenosis, Type IV. Amylopectinosis, Anderson diseaseSMP00554Not Available
Glycogenosis, Type VI. Hers diseaseSMP00555Not Available
Glycogenosis, Type VII. Tarui diseaseSMP00531Not Available
GlycolysisSMP00040map00010
Gout or Kelley-Seegmiller SyndromeSMP00365Not Available
Guanidinoacetate Methyltransferase Deficiency (GAMT Deficiency)SMP00188Not Available
HawkinsinuriaSMP00190Not Available
Hereditary Coproporphyria (HCP)SMP00342Not Available
Histidine MetabolismSMP00044map00340
HistidinemiaSMP00191Not Available
HomocarnosinosisSMP00385Not Available
Homocystinuria-megaloblastic anemia due to defect in cobalamin metabolism, cblG complementation typeSMP00570Not Available
Hyperglycinemia, non-ketoticSMP00485Not Available
Hyperinsulinism-Hyperammonemia SyndromeSMP00339Not Available
Hyperlysinemia I, FamilialSMP00527Not Available
Hyperlysinemia II or SaccharopinuriaSMP00528Not Available
HypermethioninemiaSMP00341Not Available
Hyperornithinemia with gyrate atrophy (HOGA)SMP00505Not Available
Hyperornithinemia-hyperammonemia-homocitrullinuria [HHH-syndrome]SMP00506Not Available
Hyperphenylalaniemia due to guanosine triphosphate cyclohydrolase deficiencySMP00487Not Available
Hyperphenylalaninemia due to 6-pyruvoyltetrahydropterin synthase deficiency (ptps)SMP00488Not Available
Hyperphenylalaninemia due to dhpr-deficiencySMP00489Not Available
Hyperprolinemia Type ISMP00361Not Available
Hyperprolinemia Type IISMP00360Not Available
Ifosfamide Metabolism PathwaySMP00605Not Available
Ifosfamide PathwaySMP00448Not Available
Imipramine Metabolism PathwaySMP00625Not Available
Imipramine PathwaySMP00422Not Available
Isobutyryl-coa dehydrogenase deficiencySMP00523Not Available
Isovaleric acidemiaSMP00524Not Available
Isovaleric AciduriaSMP00238Not Available
Ketone Body MetabolismSMP00071map00072
L-arginine:glycine amidinotransferase deficiencySMP00507Not Available
Leigh SyndromeSMP00196Not Available
Lesch-Nyhan Syndrome (LNS)SMP00364Not Available
Levomethadyl Acetate Metabolism PathwaySMP00638Not Available
Lidocaine (Antiarrhythmic) PathwaySMP00328Not Available
Lidocaine (Local Anaesthetic) Metabolism PathwaySMP00620Not Available
Lidocaine (Local Anaesthetic) PathwaySMP00398Not Available
Long chain acyl-CoA dehydrogenase deficiency (LCAD)SMP00539Not Available
Long-chain-3-hydroxyacyl-coa dehydrogenase deficiency (LCHAD)SMP00544Not Available
Lysine DegradationSMP00037map00310
Malate-Aspartate ShuttleSMP00129Not Available
Malonic AciduriaSMP00198Not Available
Malonyl-coa decarboxylase deficiencySMP00502Not Available
Maple Syrup Urine DiseaseSMP00199Not Available
Medium chain acyl-coa dehydrogenase deficiency (MCAD)SMP00542Not Available
Mercaptopurine Metabolism PathwaySMP00609Not Available
Mercaptopurine PathwaySMP00428Not Available
Methadone Metabolism PathwaySMP00624Not Available
Methadone PathwaySMP00408Not Available
Methionine Adenosyltransferase DeficiencySMP00221Not Available
Methionine MetabolismSMP00033map00270
Methotrexate PathwaySMP00432Not Available
Methylenetetrahydrofolate Reductase Deficiency (MTHFRD)SMP00543Not Available
Methylenetetrahydrofolate Reductase Deficiency (MTHFRD)SMP00340Not Available
Methylmalonate Semialdehyde Dehydrogenase DeficiencySMP00384Not Available
Methylmalonic AciduriaSMP00200Not Available
Methylmalonic Aciduria Due to Cobalamin-Related DisordersSMP00201Not Available
Mitochondrial Beta-Oxidation of Long Chain Saturated Fatty AcidsSMP00482Not Available
Mitochondrial Beta-Oxidation of Medium Chain Saturated Fatty AcidsSMP00481Not Available
Mitochondrial Beta-Oxidation of Short Chain Saturated Fatty AcidsSMP00480Not Available
Mitochondrial complex II deficiencySMP00548Not Available
Mitochondrial DNA depletion syndromeSMP00536Not Available
Mitochondrial Electron Transport ChainSMP00355map00190
Molybdenum Cofactor DeficiencySMP00203Not Available
Monoamine oxidase-a deficiency (MAO-A)SMP00533Not Available
Mucopolysaccharidosis VI. Sly syndromeSMP00556Not Available
Mycophenolic Acid Metabolism PathwaySMP00652Not Available
Myoadenylate deaminase deficiencySMP00537Not Available
Nicotinate and Nicotinamide MetabolismSMP00048map00760
Nicotine Metabolism PathwaySMP00628Not Available
Nicotine PathwaySMP00431Not Available
Non Ketotic HyperglycinemiaSMP00223Not Available
Nucleotide Sugars MetabolismSMP00010map00520
Ornithine Aminotransferase Deficiency (OAT Deficiency)SMP00363Not Available
Ornithine Transcarbamylase Deficiency (OTC Deficiency)SMP00205Not Available
Phosphoenolpyruvate carboxykinase deficiency 1 (PEPCK1)SMP00560Not Available
Phospholipid BiosynthesisSMP00025map00564
Phytanic Acid Peroxisomal OxidationSMP00450Not Available
Plasmalogen SynthesisSMP00479Not Available
Porphyria Variegata (PV)SMP00346Not Available
Porphyrin MetabolismSMP00024map00860
Primary hyperoxaluria II, PH2SMP00558Not Available
Prolidase Deficiency (PD)SMP00207Not Available
Prolinemia Type IISMP00208Not Available
Propanoate MetabolismSMP00016map00640
Propionic AcidemiaSMP00236Not Available
Pterine BiosynthesisSMP00005map00790
Purine MetabolismSMP00050map00230
Purine Nucleoside Phosphorylase DeficiencySMP00210Not Available
Pyridoxine dependency with seizuresSMP00571Not Available
Pyruvate Decarboxylase E1 Component Deficiency (PDHE1 Deficiency)SMP00334Not Available
Pyruvate Dehydrogenase Complex DeficiencySMP00212Not Available
Pyruvate dehydrogenase deficiency (E2)SMP00551Not Available
Pyruvate dehydrogenase deficiency (E3)SMP00550Not Available
Pyruvate kinase deficiencySMP00559Not Available
Pyruvate MetabolismSMP00060map00620
Refsum DiseaseSMP00451Not Available
Retinol MetabolismSMP00074map00830
Rosiglitazone Metabolism PathwaySMP00653Not Available
S-Adenosylhomocysteine (SAH) Hydrolase DeficiencySMP00214Not Available
Saccharopinuria/Hyperlysinemia IISMP00239Not Available
sarcosine oncometabolite pathway SMP02313Not Available
SarcosinemiaSMP00244Not Available
Segawa syndromeSMP00490Not Available
Sepiapterin reductase deficiencySMP00491Not Available
Short Chain Acyl CoA Dehydrogenase Deficiency (SCAD Deficiency)SMP00235Not Available
Short-chain 3-hydroxyacyl-CoA dehydrogenase deficiency (SCHAD)SMP00568Not Available
Starch and Sucrose MetabolismSMP00058map00500
SteroidogenesisSMP00130map00140
Succinic semialdehyde dehydrogenase deficiencySMP00567Not Available
Succinyl CoA: 3-ketoacid CoA transferase deficiencySMP00569Not Available
Sucrase-isomaltase deficiencySMP00557Not Available
Teniposide Metabolism PathwaySMP00602Not Available
Teniposide PathwaySMP00443Not Available
The oncogenic action of 2-hydroxyglutarateSMP02291Not Available
The oncogenic action of D-2-hydroxyglutarate in Hydroxygluaricaciduria SMP02359Not Available
The oncogenic action of FumarateSMP02295Not Available
The oncogenic action of L-2-hydroxyglutarate in HydroxygluaricaciduriaSMP02358Not Available
The oncogenic action of SuccinateSMP02292Not Available
Thioguanine PathwaySMP00430Not Available
Threonine and 2-Oxobutanoate DegradationSMP00452Not Available
Tramadol Metabolism PathwaySMP00637Not Available
Transfer of Acetyl Groups into MitochondriaSMP00466Not Available
Trifunctional protein deficiencySMP00545Not Available
Triosephosphate isomeraseSMP00563Not Available
Tryptophan MetabolismSMP00063map00380
Tyrosine MetabolismSMP00006map00350
Tyrosinemia Type ISMP00218Not Available
Tyrosinemia, transient, of the newbornSMP00494Not Available
Urea CycleSMP00059map00330
Ureidopropionase deficiencySMP00492Not Available
Valine, Leucine and Isoleucine DegradationSMP00032map00280
Valproic Acid Metabolism PathwaySMP00635Not Available
Venlafaxine Metabolism PathwaySMP00636Not Available
Very-long-chain acyl coa dehydrogenase deficiency (VLCAD)SMP00540Not Available
Vitamin A DeficiencySMP00336Not Available
Warburg EffectSMP00654Not Available
Xanthine Dehydrogenase Deficiency (Xanthinuria)SMP00220Not Available
Xanthinuria type ISMP00512Not Available
Xanthinuria type IISMP00513Not Available
Zellweger SyndromeSMP00316Not Available
Normal Concentrations
BiofluidStatusValueAgeSexConditionReferenceDetails
BloodDetected and Quantified22.0 (14.0-40.0) uMAdult (>18 years old)BothNormal
    • Geigy Scientific ...
details
Abnormal Concentrations
Not Available
Associated Disorders and Diseases
Disease ReferencesNone
Associated OMIM IDsNone
DrugBank IDDB00157
DrugBank Metabolite IDNot Available
Phenol Explorer Compound IDNot Available
Phenol Explorer Metabolite IDNot Available
FoodDB IDFDB022649
KNApSAcK IDNot Available
Chemspider ID903
KEGG Compound IDC00004
BioCyc IDNADH
BiGG ID33484
Wikipedia LinkNADH
NuGOwiki LinkHMDB01487
Metagene LinkHMDB01487
METLIN ID3687
PubChem Compound928
PDB IDNot Available
ChEBI ID16908
References
Synthesis ReferenceMarek, Miroslav; Vrbova, Eva; Horakova, Irena; Musil, Petr; Kefurt, Karel. NADH manufacture with immobilized Candida formate dehydrogenase. Czech. (1992), 4 pp.
Material Safety Data Sheet (MSDS)Download (PDF)
General References
  1. Krotz F, Sohn HY, Gloe T, Zahler S, Riexinger T, Schiele TM, Becker BF, Theisen K, Klauss V, Pohl U: NAD(P)H oxidase-dependent platelet superoxide anion release increases platelet recruitment. Blood. 2002 Aug 1;100(3):917-24. [12130503 ]
  2. Yamamoto T, Moriwaki Y, Takahashi S, Suda M, Higashino K: Ethanol as a xanthine dehydrogenase inhibitor. Metabolism. 1995 Jun;44(6):779-85. [7783663 ]
  3. Nadlinger K, Westerthaler W, Storga-Tomic D, Birkmayer JG: Extracellular metabolisation of NADH by blood cells correlates with intracellular ATP levels. Biochim Biophys Acta. 2002 Nov 14;1573(2):177-82. [12399028 ]
  4. Saada A, Bar-Meir M, Belaiche C, Miller C, Elpeleg O: Evaluation of enzymatic assays and compounds affecting ATP production in mitochondrial respiratory chain complex I deficiency. Anal Biochem. 2004 Dec 1;335(1):66-72. [15519572 ]
  5. Heiman-Patterson TD, Argov Z, Chavin JM, Kalman B, Alder H, DiMauro S, Bank W, Tahmoush AJ: Biochemical and genetic studies in a family with mitochondrial myopathy. Muscle Nerve. 1997 Oct;20(10):1219-24. [9324076 ]
  6. Mintun MA, Vlassenko AG, Rundle MM, Raichle ME: Increased lactate/pyruvate ratio augments blood flow in physiologically activated human brain. Proc Natl Acad Sci U S A. 2004 Jan 13;101(2):659-64. Epub 2004 Jan 2. [14704276 ]
  7. Yeo SF, Zhang Y, Schafer D, Campbell S, Wong B: A rapid, automated enzymatic fluorometric assay for determination of D-arabinitol in serum. J Clin Microbiol. 2000 Apr;38(4):1439-43. [10747122 ]
  8. Uppal A, Ghosh N, Datta A, Gupta PK: Fluorimetric estimation of the concentration of NADH from human blood samples. Biotechnol Appl Biochem. 2005 Feb;41(Pt 1):43-7. [15035655 ]
  9. Yamamoto T, Moriwaki Y, Takahashi S, Suda M, Higashino K: Xylitol-induced increase in the concentration of oxypurines and its mechanism. Int J Clin Pharmacol Ther. 1995 Jun;33(6):360-5. [7582389 ]
  10. Helge JW, Fraser AM, Kriketos AD, Jenkins AB, Calvert GD, Ayre KJ, Storlien LH: Interrelationships between muscle fibre type, substrate oxidation and body fat. Int J Obes Relat Metab Disord. 1999 Sep;23(9):986-91. [10490806 ]
  11. Fulco M, Schiltz RL, Iezzi S, King MT, Zhao P, Kashiwaya Y, Hoffman E, Veech RL, Sartorelli V: Sir2 regulates skeletal muscle differentiation as a potential sensor of the redox state. Mol Cell. 2003 Jul;12(1):51-62. [12887892 ]
  12. Li D, Gan Y, Wientjes MG, Badalament RA, Au JL: Distribution of DT-diaphorase and reduced nicotinamide adenine dinucleotide phosphate: cytochrome p450 oxidoreductase in bladder tissues and tumors. J Urol. 2001 Dec;166(6):2500-5. [11696818 ]
  13. Desir G, Bratusch-Marrain P, DeFronzo RA: Effect of hyperketonemia on renal ammonia excretion in man. Metabolism. 1986 Aug;35(8):736-43. [3736414 ]
  14. Odland LM, Heigenhauser GJ, Spriet LL: Effects of high fat provision on muscle PDH activation and malonyl-CoA content in moderate exercise. J Appl Physiol. 2000 Dec;89(6):2352-8. [11090589 ]
  15. Rani K, Garg P, Pundir CS: Measurement of bile acid in serum and bile with arylamine-glass-bound 3alpha-hydroxysteroid dehydrogenase and diaphorase. Anal Biochem. 2004 Sep 1;332(1):32-7. [15301946 ]
  16. Nomura H, Koike F, Tsuruta Y, Iwaki A, Iwaki T: Autopsy case of autosomal recessive hereditary spastic paraplegia with reference to the muscular pathology. Neuropathology. 2001 Sep;21(3):212-7. [11666018 ]
  17. Orallo F, Alvarez E, Camina M, Leiro JM, Gomez E, Fernandez P: The possible implication of trans-Resveratrol in the cardioprotective effects of long-term moderate wine consumption. Mol Pharmacol. 2002 Feb;61(2):294-302. [11809853 ]
  18. Jawed S, Stevens CR, Harrison R, Blake DR: Elevated circulating plasma NADH oxidising activity of xanthine oxidoreductase in plasma. Biochem Soc Trans. 1997 Aug;25(3):531S. [9388747 ]
  19. Harbord MG, Hwang PA, Robinson BH, Becker LE, Hunjan A, Murphy EG: Infant-onset progressive myoclonus epilepsy. J Child Neurol. 1991 Apr;6(2):134-42. [1904460 ]
  20. Mayevsky A, Meilin S, Manor T, Ornstein E, Zarchin N, Sonn J: Multiparametric monitoring of brain oxygen balance under experimental and clinical conditions. Neurol Res. 1998;20 Suppl 1:S76-80. [9584930 ]
  21. Biellmann JF, Lapinte C, Haid E, Weimann G: Structure of lactate dehydrogenase inhibitor generated from coenzyme. Biochemistry. 1979 Apr 3;18(7):1212-7. [218616 ]
  22. Lin SJ, Guarente L: Nicotinamide adenine dinucleotide, a metabolic regulator of transcription, longevity and disease. Curr Opin Cell Biol. 2003 Apr;15(2):241-6. [12648681 ]
  23. Belenky P, Bogan KL, Brenner C: NAD+ metabolism in health and disease. Trends Biochem Sci. 2007 Jan;32(1):12-9. Epub 2006 Dec 11. [17161604 ]
  24. Pollak N, Dolle C, Ziegler M: The power to reduce: pyridine nucleotides--small molecules with a multitude of functions. Biochem J. 2007 Mar 1;402(2):205-18. [17295611 ]
  25. Khan JA, Forouhar F, Tao X, Tong L: Nicotinamide adenine dinucleotide metabolism as an attractive target for drug discovery. Expert Opin Ther Targets. 2007 May;11(5):695-705. [17465726 ]
  26. WholeHealthMD [Link]

Only showing the first 50 proteins. There are 219 proteins in total.

Enzymes

General function:
Involved in catalytic activity
Specific function:
The pyruvate dehydrogenase complex catalyzes the overall conversion of pyruvate to acetyl-CoA and CO(2), and thereby links the glycolytic pathway to the tricarboxylic cycle.
Gene Name:
PDHB
Uniprot ID:
P11177
Molecular weight:
39233.1
General function:
Involved in oxidoreductase activity, acting on the aldehyde or oxo group of donors, disulfide as acceptor
Specific function:
The pyruvate dehydrogenase complex catalyzes the overall conversion of pyruvate to acetyl-CoA and CO(2), and thereby links the glycolytic pathway to the tricarboxylic cycle.
Gene Name:
PDHA1
Uniprot ID:
P08559
Molecular weight:
43295.255
General function:
Involved in oxidoreductase activity, acting on the aldehyde or oxo group of donors, disulfide as acceptor
Specific function:
The pyruvate dehydrogenase complex catalyzes the overall conversion of pyruvate to acetyl-CoA and CO(2), and thereby links the glycolytic pathway to the tricarboxylic cycle.
Gene Name:
PDHA2
Uniprot ID:
P29803
Molecular weight:
42932.855
General function:
Involved in oxidoreductase activity
Specific function:
Plays a role in valine and pyrimidine metabolism. Binds fatty acyl-CoA.
Gene Name:
ALDH6A1
Uniprot ID:
Q02252
Molecular weight:
57839.31
Reactions
2-Methyl-3-oxopropanoic acid + Coenzyme A + Water + NAD → Propionyl-CoA + Carbonic acid + NADHdetails
Malonic semialdehyde + Coenzyme A + NAD → Acetyl-CoA + Carbon dioxide + NADH + Hydrogen Iondetails
(S)-Methylmalonic acid semialdehyde + Coenzyme A + NAD → Propionyl-CoA + Carbon dioxide + NADH + Hydrogen Iondetails
(S)-Methylmalonic acid semialdehyde + Coenzyme A + NAD → Methylmalonyl-CoA + NADH + Hydrogen Iondetails
General function:
Involved in oxidoreductase activity
Specific function:
Lipoamide dehydrogenase is a component of the glycine cleavage system as well as of the alpha-ketoacid dehydrogenase complexes. Involved in the hyperactivation of spermatazoa during capacitation and in the spermatazoal acrosome reaction.
Gene Name:
DLD
Uniprot ID:
P09622
Molecular weight:
54176.91
Reactions
Protein N(6)-(dihydrolipoyl)lysine + NAD → protein N(6)-(lipoyl)lysine + NADHdetails
Dihydrolipoamide + NAD → Lipoamide + NADH + Hydrogen Iondetails
Dihydrolipoylprotein + NAD → Lipoylprotein + NADH + Hydrogen Iondetails
Enzyme N6-(dihydrolipoyl)lysine + NAD → Enzyme N6-(lipoyl)lysine + NADH + Hydrogen Iondetails
General function:
Involved in acyltransferase activity
Specific function:
The pyruvate dehydrogenase complex catalyzes the overall conversion of pyruvate to acetyl-CoA and CO(2), and thereby links the glycolytic pathway to the tricarboxylic cycle.
Gene Name:
DLAT
Uniprot ID:
P10515
Molecular weight:
68996.03
General function:
Involved in oxidoreductase activity
Specific function:
Catalyzes the transformation of the potent androgen dihydrotestosterone (DHT) into the less active form, 5-alpha-androstan-3-alpha,17-beta-diol (3-alpha-diol). Also has some 20-alpha-hydroxysteroid dehydrogenase activity. The biotransformation of the pesticide chlordecone (kepone) to its corresponding alcohol leads to increased biliary excretion of the pesticide and concomitant reduction of its neurotoxicity since bile is the major excretory route.
Gene Name:
AKR1C4
Uniprot ID:
P17516
Molecular weight:
37094.57
Reactions
Androsterone + NAD → Androstanedione + NADH + Hydrogen Iondetails
Etiocholanolone + NAD → Etiocholanedione + NADH + Hydrogen Iondetails
3a,7a-Dihydroxy-5b-cholestane + NAD → 7a-Hydroxy-5b-cholestan-3-one + NADH + Hydrogen Iondetails
5-b-Cholestane-3a ,7a ,12a-triol + NAD → 7a,12a-Dihydroxy-5b-cholestan-3-one + NADH + Hydrogen Iondetails
Tetrahydrocortisone + NAD → 17a,21-Dihydroxy-5b-pregnane-3,11,20-trione + NADH + Hydrogen Iondetails
Tetrahydrocortisol + NAD → Dihydrocortisol + NADH + Hydrogen Iondetails
3a,11b,21-Trihydroxy-20-oxo-5b-pregnan-18-al + NAD → 11b,21-Dihydroxy-3,20-oxo-5b-pregnan-18-al + NADH + Hydrogen Iondetails
Tetrahydrocorticosterone + NAD → 11b,21-Dihydroxy-5b-pregnane-3,20-dione + NADH + Hydrogen Iondetails
3a,21-Dihydroxy-5b-pregnane-11,20-dione + NAD → 21-Hydroxy-5b-pregnane-3,11,20-trione + NADH + Hydrogen Iondetails
3a-Hydroxy-5b-pregnane-20-one + NAD → 5a-Pregnane-3,20-dione + NADH + Hydrogen Iondetails
General function:
Involved in oxidoreductase activity
Specific function:
Prostaglandin inactivation. Contributes to the regulation of events that are under the control of prostaglandin levels. Catalyzes the NAD-dependent dehydrogenation of lipoxin A4 to form 15-oxo-lipoxin A4. Inhibits in vivo proliferation of colon cancer cells.
Gene Name:
HPGD
Uniprot ID:
P15428
Molecular weight:
28977.105
Reactions
(5Z,13E,15S)-11-alpha,15-dihydroxy-9-oxoprost-5,13-dienoate + NAD → (5Z,13E)-11-alpha-hydroxy-9,15-dioxoprost-5,13-dienoate + NADHdetails
General function:
Involved in oxidoreductase activity
Specific function:
This is a copper-containing oxidase that functions in the formation of pigments such as melanins and other polyphenolic compounds. Catalyzes the rate-limiting conversions of tyrosine to DOPA, DOPA to DOPA-quinone and possibly 5,6-dihydroxyindole to indole-5,6 quinone.
Gene Name:
TYR
Uniprot ID:
P14679
Molecular weight:
60392.69
Reactions
Tyramine + Oxygen + NADH + Hydrogen Ion → Dopamine + NAD + Waterdetails
General function:
Involved in oxidoreductase activity
Specific function:
Catalyzes the NADPH-dependent reduction of a wide variety of carbonyl-containing compounds to their corresponding alcohols with a broad range of catalytic efficiencies.
Gene Name:
AKR1B1
Uniprot ID:
P15121
Molecular weight:
35853.125
Reactions
Glycerol + NAD → Glyceraldehyde + NADH + Hydrogen Iondetails
Beta-D-Galactose + NADH + Hydrogen Ion → Galactitol + NADdetails
L-Arabitol + NAD → L-Arabinose + NADH + Hydrogen Iondetails
Lactaldehyde + NAD → Pyruvaldehyde + NADH + Hydrogen Iondetails
General function:
Involved in acyl-CoA dehydrogenase activity
Specific function:
Not Available
Gene Name:
ACADS
Uniprot ID:
P16219
Molecular weight:
44296.705
Reactions
Butyryl-CoA + NAD → (E)-but-2-enoyl-CoA + NADH + Hydrogen Iondetails
General function:
Involved in NADH dehydrogenase (ubiquinone) activity
Specific function:
Accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I), that is believed not to be involved in catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone
Gene Name:
NDUFB10
Uniprot ID:
O96000
Molecular weight:
20776.5
General function:
Involved in oxidation reduction
Specific function:
Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone (By similarity).
Gene Name:
MT-ND1
Uniprot ID:
P03886
Molecular weight:
35660.055
Reactions
NADH + Coenzyme Q10 → NAD + QH(2)details
General function:
Involved in NADH dehydrogenase activity
Specific function:
Accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I), that is believed not to be involved in catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone
Gene Name:
NDUFB1
Uniprot ID:
O75438
Molecular weight:
6961.2
General function:
Involved in catalytic activity
Specific function:
Involved primarily in ATP hydrolysis at the plasma membrane. Plays a role in regulating pyrophosphate levels, and functions in bone mineralization and soft tissue calcification. In vitro, has a broad specificity, hydrolyzing other nucleoside 5' triphosphates such as GTP, CTP, TTP and UTP to their corresponding monophosphates with release of pyrophosphate and diadenosine polyphosphates, and also 3',5'-cAMP to AMP. May also be involved in the regulation of the availability of nucleotide sugars in the endoplasmic reticulum and Golgi, and the regulation of purinergic signaling. Appears to modulate insulin sensitivity.
Gene Name:
ENPP1
Uniprot ID:
P22413
Molecular weight:
104923.58
General function:
Involved in oxidoreductase activity, acting on NADH or NADPH
Specific function:
Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone (By similarity).
Gene Name:
NDUFS2
Uniprot ID:
O75306
Molecular weight:
51851.59
Reactions
NADH + Coenzyme Q10 → NAD + QH(2)details
NADH + acceptor → NAD + reduced acceptordetails
General function:
Involved in NADH dehydrogenase (ubiquinone) activity
Specific function:
Accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I), that is believed not to be involved in catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone
Gene Name:
NDUFA12
Uniprot ID:
Q9UI09
Molecular weight:
17114.4
General function:
Involved in oxidoreductase activity
Specific function:
Desaturation and elongation of fatty acids, cholesterol biosynthesis, drug metabolism, and, in erythrocyte, methemoglobin reduction.
Gene Name:
CYB5R3
Uniprot ID:
P00387
Molecular weight:
34234.55
Reactions
NADH + ferricytochrome b5 → NAD + Hydrogen Ion + ferrocytochrome b5details
General function:
Involved in NADH dehydrogenase (ubiquinone) activity
Specific function:
Accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I), that is believed not to be involved in catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone
Gene Name:
NDUFA1
Uniprot ID:
O15239
Molecular weight:
8072.3
General function:
Not Available
Specific function:
Not Available
Gene Name:
NDUFA4L2
Uniprot ID:
Q9NRX3
Molecular weight:
9965.6
General function:
Involved in NADH dehydrogenase (ubiquinone) activity
Specific function:
Accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I), that is believed not to be involved in catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone
Gene Name:
NDUFA3
Uniprot ID:
O95167
Molecular weight:
9278.8
General function:
Involved in NADH dehydrogenase (ubiquinone) activity
Specific function:
Accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I), that is believed not to be involved in catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone
Gene Name:
NDUFA8
Uniprot ID:
P51970
Molecular weight:
20104.9
General function:
Involved in NADH dehydrogenase (ubiquinone) activity
Specific function:
Accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I), that is believed to be not involved in catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone
Gene Name:
NDUFA4
Uniprot ID:
O00483
Molecular weight:
9369.8
General function:
Involved in oxidoreductase activity, acting on NADH or NADPH
Specific function:
Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone (By similarity).
Gene Name:
MT-ND4L
Uniprot ID:
P03901
Molecular weight:
10741.005
Reactions
NADH + Coenzyme Q10 → NAD + QH(2)details
General function:
Involved in protein transporter activity
Specific function:
Accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I), that is believed not to be involved in catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone
Gene Name:
NDUFA11
Uniprot ID:
Q86Y39
Molecular weight:
14852.0
General function:
Involved in iron ion binding
Specific function:
Catalyzes a dehydrogenation to introduce C5-6 double bond into lathosterol.
Gene Name:
SC5DL
Uniprot ID:
O75845
Molecular weight:
35300.55
Reactions
Lathosterol + NADH + Hydrogen Ion + Oxygen → 7-Dehydrocholesterol + NAD + Waterdetails
General function:
Involved in NADH dehydrogenase (ubiquinone) activity
Specific function:
Accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I), that is believed not to be involved in catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone
Gene Name:
NDUFB2
Uniprot ID:
O95178
Molecular weight:
12058.4
General function:
Involved in oxidoreductase activity, acting on NADH or NADPH
Specific function:
Accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I), that is believed not to be involved in catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone
Gene Name:
NDUFS4
Uniprot ID:
O43181
Molecular weight:
20107.8
General function:
Involved in NADH dehydrogenase (ubiquinone) activity
Specific function:
Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone (By similarity).
Gene Name:
MT-ND5
Uniprot ID:
P03915
Molecular weight:
67025.67
Reactions
NADH + Coenzyme Q10 → NAD + QH(2)details
General function:
Involved in oxidoreductase activity, acting on NADH or NADPH
Specific function:
Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone (By similarity).
Gene Name:
NDUFS3
Uniprot ID:
O75489
Molecular weight:
30241.245
Reactions
NADH + Coenzyme Q10 → NAD + QH(2)details
NADH + acceptor → NAD + reduced acceptordetails
General function:
Involved in NADH dehydrogenase (ubiquinone) activity
Specific function:
Accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I), that is believed not to be involved in catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone
Gene Name:
NDUFS5
Uniprot ID:
O43920
Molecular weight:
12517.4
General function:
Involved in oxidoreductase activity
Specific function:
Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone (By similarity).
Gene Name:
NDUFV2
Uniprot ID:
P19404
Molecular weight:
27391.36
Reactions
NADH + Coenzyme Q10 → NAD + QH(2)details
NADH + acceptor → NAD + reduced acceptordetails
General function:
Involved in ATP binding
Specific function:
Accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I), that is believed not to be involved in catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone
Gene Name:
NDUFA10
Uniprot ID:
O95299
Molecular weight:
40750.3
General function:
Involved in NADH dehydrogenase (ubiquinone) activity
Specific function:
Accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I), that is believed to be not involved in catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone
Gene Name:
NDUFA6
Uniprot ID:
P56556
Molecular weight:
17870.7
General function:
Involved in NADH dehydrogenase (ubiquinone) activity
Specific function:
Accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I), that is believed not to be involved in catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone
Gene Name:
NDUFV3
Uniprot ID:
P56181
Molecular weight:
11940.4
General function:
Involved in NADH dehydrogenase (ubiquinone) activity
Specific function:
Accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I), that is believed not to be involved in catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone
Gene Name:
NDUFB4
Uniprot ID:
O95168
Molecular weight:
15208.4
General function:
Involved in electron carrier activity
Specific function:
Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone (By similarity). May donate electrons to ubiquinone.
Gene Name:
NDUFS8
Uniprot ID:
O00217
Molecular weight:
23704.795
Reactions
NADH + Coenzyme Q10 → NAD + QH(2)details
NADH + acceptor → NAD + reduced acceptordetails
General function:
Involved in NADH dehydrogenase (ubiquinone) activity
Specific function:
Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone (By similarity).
Gene Name:
MT-ND2
Uniprot ID:
P03891
Molecular weight:
38960.47
Reactions
NADH + Coenzyme Q10 → NAD + QH(2)details
General function:
Involved in oxidoreductase activity
Specific function:
Irreversible conversion of delta-1-pyrroline-5-carboxylate (P5C), derived either from proline or ornithine, to glutamate. This is a necessary step in the pathway interconnecting the urea and tricarboxylic acid cycles. The preferred substrate is glutamic gamma-semialdehyde, other substrates include succinic, glutaric and adipic semialdehydes.
Gene Name:
ALDH4A1
Uniprot ID:
P30038
Molecular weight:
55117.24
Reactions
L-Glutamic gamma-semialdehyde + NAD + Water → L-Glutamic acid + NADH + Hydrogen Iondetails
1-Pyrroline-5-carboxylic acid + NAD + Water → L-Glutamic acid + NADH + Hydrogen Iondetails
Pyrroline hydroxycarboxylic acid + NAD + Water → 4-Hydroxy-L-glutamic acid + NADH + Hydrogen Iondetails
4-Hydroxy-L-glutamic acid + NADH + Hydrogen Ion → L-4-Hydroxyglutamate semialdehyde + NAD + Waterdetails
General function:
Involved in NADH dehydrogenase (ubiquinone) activity
Specific function:
Accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I), that is believed not to be involved in catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone
Gene Name:
NDUFA7
Uniprot ID:
O95182
Molecular weight:
12551.3
General function:
Involved in NADH dehydrogenase (ubiquinone) activity
Specific function:
Accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I), that is believed not to be involved in catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone
Gene Name:
NDUFA2
Uniprot ID:
O43678
Molecular weight:
10921.4
General function:
Involved in electron carrier activity
Specific function:
Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone (By similarity). This is the largest subunit of complex I and it is a component of the iron-sulfur (IP) fragment of the enzyme. It may form part of the active site crevice where NADH is oxidized.
Gene Name:
NDUFS1
Uniprot ID:
P28331
Molecular weight:
67523.595
Reactions
NADH + Coenzyme Q10 → NAD + QH(2)details
NADH + acceptor → NAD + reduced acceptordetails
General function:
Involved in NADH dehydrogenase (ubiquinone) activity
Specific function:
Accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I), that is believed not to be involved in catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone
Gene Name:
NDUFB5
Uniprot ID:
O43674
Molecular weight:
21750.0
General function:
Involved in NADH dehydrogenase (ubiquinone) activity
Specific function:
Accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I), that is believed not to be involved in catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone
Gene Name:
NDUFC1
Uniprot ID:
O43677
Molecular weight:
8734.2
General function:
Involved in NADH dehydrogenase (ubiquinone) activity
Specific function:
Accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I), that is believed not to be involved in catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone
Gene Name:
NDUFC2
Uniprot ID:
O95298
Molecular weight:
14187.3
General function:
Involved in NADH dehydrogenase (ubiquinone) activity
Specific function:
Accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I), that is believed not to be involved in catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone
Gene Name:
NDUFB3
Uniprot ID:
O43676
Molecular weight:
11401.9
General function:
Involved in NADH dehydrogenase activity
Specific function:
Accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I), that is believed not to be involved in catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone
Gene Name:
NDUFB7
Uniprot ID:
P17568
Molecular weight:
16401.8
General function:
Involved in acyl carrier activity
Specific function:
Carrier of the growing fatty acid chain in fatty acid biosynthesis in mitochondria. Accessory and non-catalytic subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I), which functions in the transfer of electrons from NADH to the respiratory chain
Gene Name:
NDUFAB1
Uniprot ID:
O14561
Molecular weight:
17417.1
General function:
Involved in oxidoreductase activity, acting on NADH or NADPH
Specific function:
Accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I), that is believed not to be involved in catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone
Gene Name:
NDUFA5
Uniprot ID:
Q16718
Molecular weight:
13458.6
General function:
Involved in catalytic activity
Specific function:
Accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I), that is believed not to be involved in catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone
Gene Name:
NDUFA9
Uniprot ID:
Q16795
Molecular weight:
42509.2

Only showing the first 50 proteins. There are 219 proteins in total.