Hmdb loader
Survey
You are using an unsupported browser. Please upgrade your browser to a newer version to get the best experience on Human Metabolome Database.
Record Information
Version5.0
StatusDetected but not Quantified
Creation Date2019-11-14 17:10:14 UTC
Update Date2022-10-24 19:44:15 UTC
HMDB IDHMDB0240588
Secondary Accession NumbersNone
Metabolite Identification
Common NameMyristoleoylcarnitine
DescriptionMyristoleoylcarnitine is an acylcarnitine. More specifically, it is an myristoleoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279 ). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy.  This process is known as beta-oxidation. According to a recent review (PMID: 35710135 ), acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. Myristoleoylcarnitine is therefore classified as a long chain AC. As a long-chain acylcarnitine myristoleoylcarnitine is generally formed through esterification with long-chain fatty acids obtained from the diet. The main function of most long-chain acylcarnitines is to ensure long chain fatty acid transport into the mitochondria (PMID: 22804748 ). Altered levels of long-chain acylcarnitines can serve as useful markers for inherited disorders of long-chain fatty acid metabolism. In particular myristoleoylcarnitine is elevated in the blood or plasma of individuals with very long-chain acyl-CoA dehydrogenase (VLACD) deficiency (PMID: 25843429 , PMID: 19327992 , PMID: 11433098 , PMID: 18670371 , PMID: 12828998 ), trifunctional protein (mitochondrial long-chain ketoacyl-coa thiolase) deficiency (PMID: 16423905 ), mitochondrial dysfunction in diabetes patients (PMID: 28726959 ), acadvl acyl-coa dehydrogenase very long chain deficiency (PMID: 29491033 ), nonalcoholic fatty liver disease (NAFLD) (PMID: 27211699 ), and insulin resistance type 2 diabetes (PMID: 24358186 ).Carnitine palmitoyltransferase I (CPT I, EC:2.3.1.21) is involved in the synthesis of long-chain acylcarnitines (more than C12) on the mitochondrial outer membrane.  Elevated serum/plasma levels of long-chain acylcarnitines are not only markers for incomplete FA oxidation but also are indicators of altered carbohydrate and lipid metabolism. High serum concentrations of long-chain acylcarnitines in the postprandial or fed state are markers of insulin resistance and arise from insulin's inability to inhibit CPT-1-dependent fatty acid metabolism in muscles and the heart (PMID: 19073774 ). Increased intracellular content of long-chain acylcarnitines is thought to serve as a feedback inhibition mechanism of insulin action (PMID: 23258903 ). In healthy subjects, increased concentrations of insulin effectively inhibits long-chain acylcarnitine production. Several studies have also found increased levels of circulating long-chain acylcarnitines in chronic heart failure patients (PMID: 26796394 ). Myristoleoylcarnitine has also been identified in the human placenta (PMID: 32033212 ). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available (PMID: 35710135 ).
Structure
Data?1614297806
Synonyms
ValueSource
(9Z)-Tetradecenoyl-L-carnitineChEBI
(9Z)-TetradecenoylcarnitineChEBI
(R)-[(9Z)-Tetradecenoyl]-L-carnitineChEBI
(R)-[(Z)-Myristoleoyl]-L-carnitineChEBI
(Z)-Myristoleoyl-L-carnitineChEBI
(Z)-MyristoleoylcarnitineChEBI
O-(9Z)-Tetradecenoyl-(R)-carnitineChEBI
O-[(Z)-Myristoleoyl]-L-carnitineChEBI
Myristoleyl carnitineHMDB
MyristoleoylcarnitineHMDB
Chemical FormulaC21H40NO4
Average Molecular Weight370.553
Monoisotopic Molecular Weight370.295185192
IUPAC Name(3R)-3-[(9Z)-tetradec-9-enoyloxy]-4-(trimethylazaniumyl)butanoate
Traditional Name(3R)-3-[(9Z)-tetradec-9-enoyloxy]-4-(trimethylammonio)butanoate
CAS Registry Number889848-55-9
SMILES
CCCC\C=C/CCCCCCCC(=O)O[C@H](CC(O)=O)C[N+](C)(C)C
InChI Identifier
InChI=1S/C21H39NO4/c1-5-6-7-8-9-10-11-12-13-14-15-16-21(25)26-19(17-20(23)24)18-22(2,3)4/h8-9,19H,5-7,10-18H2,1-4H3/p+1/b9-8-/t19-/m1/s1
InChI KeyABVVZYXTZLEOHP-OLHLWXQYSA-O
Chemical Taxonomy
Description Belongs to the class of organic compounds known as acyl carnitines. These are organic compounds containing a fatty acid with the carboxylic acid attached to carnitine through an ester bond.
KingdomOrganic compounds
Super ClassLipids and lipid-like molecules
ClassFatty Acyls
Sub ClassFatty acid esters
Direct ParentAcyl carnitines
Alternative Parents
Substituents
  • Acyl-carnitine
  • Dicarboxylic acid or derivatives
  • Tetraalkylammonium salt
  • Quaternary ammonium salt
  • Carboxylic acid ester
  • Carboxylic acid salt
  • Carboxylic acid derivative
  • Carboxylic acid
  • Organic nitrogen compound
  • Organooxygen compound
  • Organonitrogen compound
  • Organic salt
  • Hydrocarbon derivative
  • Organic oxide
  • Organopnictogen compound
  • Organic oxygen compound
  • Carbonyl group
  • Amine
  • Aliphatic acyclic compound
Molecular FrameworkAliphatic acyclic compounds
External Descriptors
Ontology
Physiological effect
Disposition
ProcessNot Available
Role
Physical Properties
StateNot Available
Experimental Molecular Properties
PropertyValueReference
Melting PointNot AvailableNot Available
Boiling PointNot AvailableNot Available
Water SolubilityNot AvailableNot Available
LogPNot AvailableNot Available
Experimental Chromatographic PropertiesNot Available
Predicted Molecular Properties
PropertyValueSource
logP0.37ALOGPS
logP0.78ChemAxon
logS-7.4ALOGPS
pKa (Strongest Acidic)4.22ChemAxon
pKa (Strongest Basic)-7.1ChemAxon
Physiological Charge0ChemAxon
Hydrogen Acceptor Count3ChemAxon
Hydrogen Donor Count0ChemAxon
Polar Surface Area66.43 ŲChemAxon
Rotatable Bond Count17ChemAxon
Refractivity128.99 m³·mol⁻¹ChemAxon
Polarizability44.69 ųChemAxon
Number of Rings0ChemAxon
BioavailabilityYesChemAxon
Rule of FiveYesChemAxon
Ghose FilterYesChemAxon
Veber's RuleNoChemAxon
MDDR-like RuleNoChemAxon
Predicted Chromatographic Properties

Predicted Collision Cross Sections

PredictorAdduct TypeCCS Value (Å2)Reference
DeepCCS[M+H]+204.13630932474
DeepCCS[M-H]-200.11630932474
DeepCCS[M-2H]-236.65930932474
DeepCCS[M+Na]+212.95130932474

Predicted Kovats Retention Indices

Underivatized

MetaboliteSMILESKovats RI ValueColumn TypeReference
MyristoleoylcarnitineCCCC\C=C/CCCCCCCC(=O)O[C@H](CC(O)=O)C[N+](C)(C)C3422.6Standard polar33892256
MyristoleoylcarnitineCCCC\C=C/CCCCCCCC(=O)O[C@H](CC(O)=O)C[N+](C)(C)C2255.3Standard non polar33892256
MyristoleoylcarnitineCCCC\C=C/CCCCCCCC(=O)O[C@H](CC(O)=O)C[N+](C)(C)C2552.7Semi standard non polar33892256

Derivatized

Derivative Name / StructureSMILESKovats RI ValueColumn TypeReference
Myristoleoylcarnitine,1TMS,isomer #1CCCC/C=C\CCCCCCCC(=O)O[C@H](CC(=O)O[Si](C)(C)C)C[N+](C)(C)C2572.0Semi standard non polar33892256
Myristoleoylcarnitine,1TBDMS,isomer #1CCCC/C=C\CCCCCCCC(=O)O[C@H](CC(=O)O[Si](C)(C)C(C)(C)C)C[N+](C)(C)C2795.8Semi standard non polar33892256
Spectra

GC-MS Spectra

Spectrum TypeDescriptionSplash KeyDeposition DateSourceView
Predicted GC-MSPredicted GC-MS Spectrum - O-[(9Z)-Tetradecenoyl]-L-carnitine GC-MS (Non-derivatized) - 70eV, Positivesplash10-0596-8931000000-7c8bbadb74835652ea062021-09-24Wishart LabView Spectrum
Predicted GC-MSPredicted GC-MS Spectrum - O-[(9Z)-Tetradecenoyl]-L-carnitine GC-MS (Non-derivatized) - 70eV, PositiveNot Available2021-10-12Wishart LabView Spectrum
Predicted GC-MSPredicted GC-MS Spectrum - O-[(9Z)-Tetradecenoyl]-L-carnitine GC-MS (Non-derivatized) - 70eV, PositiveNot Available2021-10-12Wishart LabView Spectrum

MS/MS Spectra

Spectrum TypeDescriptionSplash KeyDeposition DateSourceView
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - Myristoleoylcarnitine 10V, Positive-QTOFsplash10-00di-0009000000-1a5965dc435463ee085f2021-09-22Wishart LabView Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - Myristoleoylcarnitine 20V, Positive-QTOFsplash10-0079-9005000000-84dcf946c3b41ee8ec832021-09-22Wishart LabView Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - Myristoleoylcarnitine 40V, Positive-QTOFsplash10-000i-9000000000-e9262cbaff8cb4ad0ba62021-09-22Wishart LabView Spectrum
Biological Properties
Cellular LocationsNot Available
Biospecimen Locations
  • Blood
  • Urine
Tissue Locations
  • Placenta
Pathways
Normal Concentrations
Not Available
Abnormal Concentrations
BiospecimenStatusValueAgeSexConditionReferenceDetails
BloodExpected but not QuantifiedNot QuantifiedNot SpecifiedNot SpecifiedCancer patients undergoing total body irradiation details
UrineDetected but not QuantifiedNot QuantifiedNot SpecifiedNot SpecifiedCancer patients undergoing total body irradiation details
Associated Disorders and Diseases
Disease ReferencesNone
Associated OMIM IDsNone
DrugBank IDNot Available
Phenol Explorer Compound IDNot Available
FooDB IDNot Available
KNApSAcK IDNot Available
Chemspider ID34999520
KEGG Compound IDNot Available
BioCyc IDNot Available
BiGG IDNot Available
Wikipedia LinkNot Available
METLIN IDNot Available
PubChem Compound90659872
PDB IDNot Available
ChEBI ID84647
Food Biomarker OntologyNot Available
VMH IDNot Available
MarkerDB IDNot Available
Good Scents IDNot Available
References
Synthesis ReferenceNot Available
Material Safety Data Sheet (MSDS)Not Available
General References
  1. Okun JG, Kolker S, Schulze A, Kohlmuller D, Olgemoller K, Lindner M, Hoffmann GF, Wanders RJ, Mayatepek E: A method for quantitative acylcarnitine profiling in human skin fibroblasts using unlabelled palmitic acid: diagnosis of fatty acid oxidation disorders and differentiation between biochemical phenotypes of MCAD deficiency. Biochim Biophys Acta. 2002 Oct 10;1584(2-3):91-8. [PubMed:12385891 ]
  2. Shigematsu Y, Hirano S, Hata I, Tanaka Y, Sudo M, Tajima T, Sakura N, Yamaguchi S, Takayanagi M: Selective screening for fatty acid oxidation disorders by tandem mass spectrometry: difficulties in practical discrimination. J Chromatogr B Analyt Technol Biomed Life Sci. 2003 Jul 15;792(1):63-72. [PubMed:12828998 ]
  3. Wood JC, Magera MJ, Rinaldo P, Seashore MR, Strauss AW, Friedman A: Diagnosis of very long chain acyl-dehydrogenase deficiency from an infant's newborn screening card. Pediatrics. 2001 Jul;108(1):E19. [PubMed:11433098 ]
  4. Elshenawy S, Pinney SE, Stuart T, Doulias PT, Zura G, Parry S, Elovitz MA, Bennett MJ, Bansal A, Strauss JF 3rd, Ischiropoulos H, Simmons RA: The Metabolomic Signature of the Placenta in Spontaneous Preterm Birth. Int J Mol Sci. 2020 Feb 4;21(3). pii: ijms21031043. doi: 10.3390/ijms21031043. [PubMed:32033212 ]
  5. FRITZ IB: Action of carnitine on long chain fatty acid oxidation by liver. Am J Physiol. 1959 Aug;197:297-304. doi: 10.1152/ajplegacy.1959.197.2.297. [PubMed:13825279 ]
  6. Reuter SE, Evans AM: Carnitine and acylcarnitines: pharmacokinetic, pharmacological and clinical aspects. Clin Pharmacokinet. 2012 Sep 1;51(9):553-72. doi: 10.1007/BF03261931. [PubMed:22804748 ]
  7. Bruce CR, Hoy AJ, Turner N, Watt MJ, Allen TL, Carpenter K, Cooney GJ, Febbraio MA, Kraegen EW: Overexpression of carnitine palmitoyltransferase-1 in skeletal muscle is sufficient to enhance fatty acid oxidation and improve high-fat diet-induced insulin resistance. Diabetes. 2009 Mar;58(3):550-8. doi: 10.2337/db08-1078. Epub 2008 Dec 10. [PubMed:19073774 ]
  8. Schooneman MG, Vaz FM, Houten SM, Soeters MR: Acylcarnitines: reflecting or inflicting insulin resistance? Diabetes. 2013 Jan;62(1):1-8. doi: 10.2337/db12-0466. [PubMed:23258903 ]
  9. Ahmad T, Kelly JP, McGarrah RW, Hellkamp AS, Fiuzat M, Testani JM, Wang TS, Verma A, Samsky MD, Donahue MP, Ilkayeva OR, Bowles DE, Patel CB, Milano CA, Rogers JG, Felker GM, O'Connor CM, Shah SH, Kraus WE: Prognostic Implications of Long-Chain Acylcarnitines in Heart Failure and Reversibility With Mechanical Circulatory Support. J Am Coll Cardiol. 2016 Jan 26;67(3):291-9. doi: 10.1016/j.jacc.2015.10.079. [PubMed:26796394 ]
  10. Abu Bakar MH, Sarmidi MR: Association of cultured myotubes and fasting plasma metabolite profiles with mitochondrial dysfunction in type 2 diabetes subjects. Mol Biosyst. 2017 Aug 22;13(9):1838-1853. doi: 10.1039/c7mb00333a. [PubMed:28726959 ]
  11. Hisahara S, Matsushita T, Furuyama H, Tajima G, Shigematsu Y, Imai T, Shimohama S: A heterozygous missense mutation in adolescent-onset very long-chain acyl-CoA dehydrogenase deficiency with exercise-induced rhabdomyolysis. Tohoku J Exp Med. 2015 Apr;235(4):305-10. doi: 10.1620/tjem.235.305. [PubMed:25843429 ]
  12. Laforet P, Acquaviva-Bourdain C, Rigal O, Brivet M, Penisson-Besnier I, Chabrol B, Chaigne D, Boespflug-Tanguy O, Laroche C, Bedat-Millet AL, Behin A, Delevaux I, Lombes A, Andresen BS, Eymard B, Vianey-Saban C: Diagnostic assessment and long-term follow-up of 13 patients with Very Long-Chain Acyl-Coenzyme A dehydrogenase (VLCAD) deficiency. Neuromuscul Disord. 2009 May;19(5):324-9. doi: 10.1016/j.nmd.2009.02.007. Epub 2009 Mar 26. [PubMed:19327992 ]
  13. Tajima G, Sakura N, Shirao K, Okada S, Tsumura M, Nishimura Y, Ono H, Hasegawa Y, Hata I, Naito E, Yamaguchi S, Shigematsu Y, Kobayashi M: Development of a new enzymatic diagnosis method for very-long-chain Acyl-CoA dehydrogenase deficiency by detecting 2-hexadecenoyl-CoA production and its application in tandem mass spectrometry-based selective screening and newborn screening in Japan. Pediatr Res. 2008 Dec;64(6):667-72. doi: 10.1203/PDR.0b013e318187cc44. [PubMed:18670371 ]
  14. Das AM, Illsinger S, Lucke T, Hartmann H, Ruiter JP, Steuerwald U, Waterham HR, Duran M, Wanders RJ: Isolated mitochondrial long-chain ketoacyl-CoA thiolase deficiency resulting from mutations in the HADHB gene. Clin Chem. 2006 Mar;52(3):530-4. doi: 10.1373/clinchem.2005.062000. Epub 2006 Jan 19. [PubMed:16423905 ]
  15. Lepori V, Muhlhause F, Sewell AC, Jagannathan V, Janzen N, Rosati M, Alves de Sousa FMM, Tschopp A, Schupbach G, Matiasek K, Tipold A, Leeb T, Kornberg M: A Nonsense Variant in the ACADVL Gene in German Hunting Terriers with Exercise Induced Metabolic Myopathy. G3 (Bethesda). 2018 May 4;8(5):1545-1554. doi: 10.1534/g3.118.200084. [PubMed:29491033 ]
  16. Chen Y, Li C, Liu L, Guo F, Li S, Huang L, Sun C, Feng R: Serum metabonomics of NAFLD plus T2DM based on liquid chromatography-mass spectrometry. Clin Biochem. 2016 Sep;49(13-14):962-6. doi: 10.1016/j.clinbiochem.2016.05.016. Epub 2016 May 20. [PubMed:27211699 ]
  17. Mai M, Tonjes A, Kovacs P, Stumvoll M, Fiedler GM, Leichtle AB: Serum levels of acylcarnitines are altered in prediabetic conditions. PLoS One. 2013 Dec 16;8(12):e82459. doi: 10.1371/journal.pone.0082459. eCollection 2013. [PubMed:24358186 ]
  18. Dambrova M, Makrecka-Kuka M, Kuka J, Vilskersts R, Nordberg D, Attwood MM, Smesny S, Sen ZD, Guo AC, Oler E, Tian S, Zheng J, Wishart DS, Liepinsh E, Schioth HB: Acylcarnitines: Nomenclature, Biomarkers, Therapeutic Potential, Drug Targets, and Clinical Trials. Pharmacol Rev. 2022 Jul;74(3):506-551. doi: 10.1124/pharmrev.121.000408. [PubMed:35710135 ]