You are using an unsupported browser. Please upgrade your browser to a newer version to get the best experience on Human Metabolome Database.
Record Information
Version3.6
Creation Date2012-09-06 15:16:49 UTC
Update Date2016-02-11 01:28:45 UTC
HMDB IDHMDB14500
Secondary Accession NumbersNone
Metabolite Identification
Common NameChlorzoxazone
DescriptionA centrally acting central muscle relaxant with sedative properties. It is claimed to inhibit muscle spasm by exerting an effect primarily at the level of the spinal cord and subcortical areas of the brain. (From Martindale, The Extra Pharmacopoea, 30th ed, p1202)
Structure
Thumb
Synonyms
ValueSource
2-Hydroxy-5-chlorobenzoxazoleChEBI
5-chloro-2(3H)-BenzoxazoloneChEBI
5-chloro-2-BenzoxazolinoneChEBI
5-chloro-2-BenzoxazololChEBI
5-chloro-2-BenzoxazoloneChEBI
5-chloro-2-HydroxybenzoxazoleChEBI
5-ChlorobenzoxazolidoneChEBI
5-Chlorobenzoxazolin-2-oneChEBI
ChlorzoxaneChEBI
ChlorzoxazonaChEBI
ChlorzoxazonumChEBI
ChloroxazoneHMDB
ChlorzoxazonHMDB
Chemical FormulaC7H4ClNO2
Average Molecular Weight169.565
Monoisotopic Molecular Weight168.993056084
IUPAC Name5-chloro-2,3-dihydro-1,3-benzoxazol-2-one
Traditional Namechlorzoxazone
CAS Registry Number95-25-0
SMILES
ClC1=CC2=C(OC(=O)N2)C=C1
InChI Identifier
InChI=1S/C7H4ClNO2/c8-4-1-2-6-5(3-4)9-7(10)11-6/h1-3H,(H,9,10)
InChI KeyInChIKey=TZFWDZFKRBELIQ-UHFFFAOYSA-N
Chemical Taxonomy
DescriptionThis compound belongs to the class of organic compounds known as benzoxazolones. These are organic compounds containing a benzene fused to an oxazole ring (a five-member aliphatic ring with three carbon atoms, one oxygen atom, and one nitrogen atom) bearing a ketone group.
KingdomOrganic compounds
Super ClassOrganoheterocyclic compounds
ClassBenzoxazoles
Sub ClassBenzoxazolones
Direct ParentBenzoxazolones
Alternative Parents
Substituents
  • Benzoxazolone
  • Chlorobenzene
  • Benzenoid
  • Aryl halide
  • Aryl chloride
  • Heteroaromatic compound
  • Oxazole
  • Azole
  • Oxacycle
  • Azacycle
  • Monocarboxylic acid or derivatives
  • Hydrocarbon derivative
  • Organooxygen compound
  • Organonitrogen compound
  • Organochloride
  • Organohalogen compound
  • Aromatic heteropolycyclic compound
Molecular FrameworkAromatic heteropolycyclic compounds
External Descriptors
Ontology
StatusExpected but not Quantified
Origin
  • Drug
Biofunction
  • Muscle Relaxants, Central
Application
  • Pharmaceutical
Cellular locations
  • Membrane
Physical Properties
StateSolid
Experimental Properties
PropertyValueReference
Melting Point191.5 °CNot Available
Boiling PointNot AvailableNot Available
Water Solubility2.96e+00 g/LNot Available
LogP1.6Not Available
Predicted Properties
PropertyValueSource
Water Solubility2.96 mg/mLALOGPS
logP2.09ALOGPS
logP1.94ChemAxon
logS-1.8ALOGPS
pKa (Strongest Acidic)9.39ChemAxon
pKa (Strongest Basic)-2.2ChemAxon
Physiological Charge0ChemAxon
Hydrogen Acceptor Count2ChemAxon
Hydrogen Donor Count1ChemAxon
Polar Surface Area38.33 Å2ChemAxon
Rotatable Bond Count0ChemAxon
Refractivity41.07 m3·mol-1ChemAxon
Polarizability14.94 Å3ChemAxon
Number of Rings2ChemAxon
Bioavailability1ChemAxon
Rule of FiveYesChemAxon
Ghose FilterYesChemAxon
Veber's RuleYesChemAxon
MDDR-like RuleYesChemAxon
Spectra
Spectra
Spectrum TypeDescriptionSplash Key
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 10V, PositiveNot Available
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 20V, PositiveNot Available
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 40V, PositiveNot Available
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 10V, NegativeNot Available
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 20V, NegativeNot Available
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 40V, NegativeNot Available
Biological Properties
Cellular Locations
  • Membrane
Biofluid Locations
  • Blood
  • Urine
Tissue LocationNot Available
PathwaysNot Available
Normal Concentrations
BiofluidStatusValueAgeSexConditionReferenceDetails
BloodExpected but not QuantifiedNot ApplicableNot AvailableNot AvailableTaking drug identified by DrugBank entry DB00356
  • Not Applicable
details
UrineExpected but not QuantifiedNot ApplicableNot AvailableNot AvailableTaking drug identified by DrugBank entry DB00356
  • Not Applicable
details
Abnormal Concentrations
Not Available
Associated Disorders and Diseases
Disease ReferencesNone
Associated OMIM IDsNone
DrugBank IDDB00356
DrugBank Metabolite IDNot Available
Phenol Explorer Compound IDNot Available
Phenol Explorer Metabolite IDNot Available
FoodDB IDNot Available
KNApSAcK IDNot Available
Chemspider ID2632
KEGG Compound IDC07931
BioCyc IDNot Available
BiGG IDNot Available
Wikipedia LinkChlorzoxazone
NuGOwiki LinkHMDB14500
Metagene LinkHMDB14500
METLIN IDNot Available
PubChem Compound2733
PDB IDCLW
ChEBI ID3655
References
Synthesis ReferenceNot Available
Material Safety Data Sheet (MSDS)Not Available
General References
  1. Dong DL, Luan Y, Feng TM, Fan CL, Yue P, Sun ZJ, Gu RM, Yang BF: Chlorzoxazone inhibits contraction of rat thoracic aorta. Eur J Pharmacol. 2006 Sep 18;545(2-3):161-6. Epub 2006 Jun 29. [16859676 ]
  2. Wan J, Ernstgard L, Song BJ, Shoaf SE: Chlorzoxazone metabolism is increased in fasted Sprague-Dawley rats. J Pharm Pharmacol. 2006 Jan;58(1):51-61. [16393464 ]
  3. Park JY, Kim KA, Park PW, Ha JM: Effect of high-dose aspirin on CYP2E1 activity in healthy subjects measured using chlorzoxazone as a probe. J Clin Pharmacol. 2006 Jan;46(1):109-14. [16397290 ]

Enzymes

General function:
Involved in monooxygenase activity
Specific function:
Cytochromes P450 are a group of heme-thiolate monooxygenases. In liver microsomes, this enzyme is involved in an NADPH-dependent electron transport pathway. It performs a variety of oxidation reactions (e.g. caffeine 8-oxidation, omeprazole sulphoxidation, midazolam 1'-hydroxylation and midazolam 4-hydroxylation) of structurally unrelated compounds, including steroids, fatty acids, and xenobiotics. Acts as a 1,8-cineole 2-exo-monooxygenase. The enzyme also hydroxylates etoposide.
Gene Name:
CYP3A4
Uniprot ID:
P08684
Molecular weight:
57255.585
References
  1. Preissner S, Kroll K, Dunkel M, Senger C, Goldsobel G, Kuzman D, Guenther S, Winnenburg R, Schroeder M, Preissner R: SuperCYP: a comprehensive database on Cytochrome P450 enzymes including a tool for analysis of CYP-drug interactions. Nucleic Acids Res. 2010 Jan;38(Database issue):D237-43. Epub 2009 Nov 24. [19934256 ]
General function:
Involved in monooxygenase activity
Specific function:
Metabolizes several precarcinogens, drugs, and solvents to reactive metabolites. Inactivates a number of drugs and xenobiotics and also bioactivates many xenobiotic substrates to their hepatotoxic or carcinogenic forms.
Gene Name:
CYP2E1
Uniprot ID:
P05181
Molecular weight:
56848.42
References
  1. Pelkonen O, Maenpaa J, Taavitsainen P, Rautio A, Raunio H: Inhibition and induction of human cytochrome P450 (CYP) enzymes. Xenobiotica. 1998 Dec;28(12):1203-53. [9890159 ]
  2. Preissner S, Kroll K, Dunkel M, Senger C, Goldsobel G, Kuzman D, Guenther S, Winnenburg R, Schroeder M, Preissner R: SuperCYP: a comprehensive database on Cytochrome P450 enzymes including a tool for analysis of CYP-drug interactions. Nucleic Acids Res. 2010 Jan;38(Database issue):D237-43. Epub 2009 Nov 24. [19934256 ]
  3. Yasar U, Forslund-Bergengren C, Tybring G, Dorado P, Llerena A, Sjoqvist F, Eliasson E, Dahl ML: Pharmacokinetics of losartan and its metabolite E-3174 in relation to the CYP2C9 genotype. Clin Pharmacol Ther. 2002 Jan;71(1):89-98. [11823761 ]
General function:
Involved in monooxygenase activity
Specific function:
Responsible for the metabolism of many drugs and environmental chemicals that it oxidizes. It is involved in the metabolism of drugs such as antiarrhythmics, adrenoceptor antagonists, and tricyclic antidepressants.
Gene Name:
CYP2D6
Uniprot ID:
P10635
Molecular weight:
55768.94
References
  1. Preissner S, Kroll K, Dunkel M, Senger C, Goldsobel G, Kuzman D, Guenther S, Winnenburg R, Schroeder M, Preissner R: SuperCYP: a comprehensive database on Cytochrome P450 enzymes including a tool for analysis of CYP-drug interactions. Nucleic Acids Res. 2010 Jan;38(Database issue):D237-43. Epub 2009 Nov 24. [19934256 ]
General function:
Involved in monooxygenase activity
Specific function:
Cytochromes P450 are a group of heme-thiolate monooxygenases. In liver microsomes, this enzyme is involved in an NADPH-dependent electron transport pathway. It oxidizes a variety of structurally unrelated compounds, including steroids, fatty acids, and xenobiotics.
Gene Name:
CYP1A1
Uniprot ID:
P04798
Molecular weight:
58164.815
References
  1. Wiercinska P, Squires EJ: Chlorzoxazone metabolism by porcine cytochrome P450 enzymes and the effect of cytochrome b5. Drug Metab Dispos. 2010 May;38(5):857-62. Epub 2010 Feb 17. [20164110 ]
  2. Warrington JS, Court MH, Greenblatt DJ, von Moltke LL: Phenacetin and chlorzoxazone biotransformation in aging male Fischer 344 rats. J Pharm Pharmacol. 2004 Jun;56(6):819-25. [15231049 ]
General function:
Involved in monooxygenase activity
Specific function:
Cytochromes P450 are a group of heme-thiolate monooxygenases. In liver microsomes, this enzyme is involved in an NADPH-dependent electron transport pathway. It oxidizes a variety of structurally unrelated compounds, including steroids, fatty acids, and xenobiotics. Most active in catalyzing 2-hydroxylation. Caffeine is metabolized primarily by cytochrome CYP1A2 in the liver through an initial N3-demethylation. Also acts in the metabolism of aflatoxin B1 and acetaminophen. Participates in the bioactivation of carcinogenic aromatic and heterocyclic amines. Catalizes the N-hydroxylation of heterocyclic amines and the O-deethylation of phenacetin.
Gene Name:
CYP1A2
Uniprot ID:
P05177
Molecular weight:
58406.915
References
  1. Preissner S, Kroll K, Dunkel M, Senger C, Goldsobel G, Kuzman D, Guenther S, Winnenburg R, Schroeder M, Preissner R: SuperCYP: a comprehensive database on Cytochrome P450 enzymes including a tool for analysis of CYP-drug interactions. Nucleic Acids Res. 2010 Jan;38(Database issue):D237-43. Epub 2009 Nov 24. [19934256 ]
General function:
Involved in monooxygenase activity
Specific function:
Exhibits a high coumarin 7-hydroxylase activity. Can act in the hydroxylation of the anti-cancer drugs cyclophosphamide and ifosphamide. Competent in the metabolic activation of aflatoxin B1. Constitutes the major nicotine C-oxidase. Acts as a 1,4-cineole 2-exo-monooxygenase. Possesses low phenacetin O-deethylation activity.
Gene Name:
CYP2A6
Uniprot ID:
P11509
Molecular weight:
56517.005
References
  1. Preissner S, Kroll K, Dunkel M, Senger C, Goldsobel G, Kuzman D, Guenther S, Winnenburg R, Schroeder M, Preissner R: SuperCYP: a comprehensive database on Cytochrome P450 enzymes including a tool for analysis of CYP-drug interactions. Nucleic Acids Res. 2010 Jan;38(Database issue):D237-43. Epub 2009 Nov 24. [19934256 ]
General function:
Involved in ion channel activity
Specific function:
Potassium channel activated by both membrane depolarization or increase in cytosolic Ca(2+) that mediates export of K(+). It is also activated by the concentration of cytosolic Mg(2+). Its activation dampens the excitatory events that elevate the cytosolic Ca(2+) concentration and/or depolarize the cell membrane. It therefore contributes to repolarization of the membrane potential. Plays a key role in controlling excitability in a number of systems, such as regulation of the contraction of smooth muscle, the tuning of hair cells in the cochlea, regulation of transmitter release, and innate immunity. In smooth muscles, its activation by high level of Ca(2+), caused by ryanodine receptors in the sarcoplasmic reticulum, regulates the membrane potential. In cochlea cells, its number and kinetic properties partly determine the characteristic frequency of each hair cell and thereby helps to establish a tonotopic map. Kinetics of KCNMA1 channels are determined by alternative splicing, phosphorylation status and its combination with modulating beta subunits. Highly sensitive to both iberiotoxin (IbTx) and charybdotoxin (CTX)
Gene Name:
KCNMA1
Uniprot ID:
Q12791
Molecular weight:
137558.1
References
  1. Overington JP, Al-Lazikani B, Hopkins AL: How many drug targets are there? Nat Rev Drug Discov. 2006 Dec;5(12):993-6. [17139284 ]
  2. Imming P, Sinning C, Meyer A: Drugs, their targets and the nature and number of drug targets. Nat Rev Drug Discov. 2006 Oct;5(10):821-34. [17016423 ]
  3. Dong DL, Luan Y, Feng TM, Fan CL, Yue P, Sun ZJ, Gu RM, Yang BF: Chlorzoxazone inhibits contraction of rat thoracic aorta. Eur J Pharmacol. 2006 Sep 18;545(2-3):161-6. Epub 2006 Jun 29. [16859676 ]
  4. Alvina K, Khodakhah K: KCa channels as therapeutic targets in episodic ataxia type-2. J Neurosci. 2010 May 26;30(21):7249-57. [20505091 ]
  5. Syme CA, Gerlach AC, Singh AK, Devor DC: Pharmacological activation of cloned intermediate- and small-conductance Ca(2+)-activated K(+) channels. Am J Physiol Cell Physiol. 2000 Mar;278(3):C570-81. [10712246 ]
  6. Chen X, Ji ZL, Chen YZ: TTD: Therapeutic Target Database. Nucleic Acids Res. 2002 Jan 1;30(1):412-5. [11752352 ]

Transporters

General function:
Involved in ATP binding
Specific function:
Energy-dependent efflux pump responsible for decreased drug accumulation in multidrug-resistant cells
Gene Name:
ABCB1
Uniprot ID:
P08183
Molecular weight:
141477.3
References
  1. Kim RB, Wandel C, Leake B, Cvetkovic M, Fromm MF, Dempsey PJ, Roden MM, Belas F, Chaudhary AK, Roden DM, Wood AJ, Wilkinson GR: Interrelationship between substrates and inhibitors of human CYP3A and P-glycoprotein. Pharm Res. 1999 Mar;16(3):408-14. [10213372 ]