You are using an unsupported browser. Please upgrade your browser to a newer version to get the best experience on Human Metabolome Database.
Record Information
Version3.6
Creation Date2012-09-06 15:16:50 UTC
Update Date2016-02-11 01:30:33 UTC
HMDB IDHMDB14911
Secondary Accession NumbersNone
Metabolite Identification
Common NameEtoposide
DescriptionA semisynthetic derivative of podophyllotoxin that exhibits antitumor activity. Etoposide inhibits DNA synthesis by forming a complex with topoisomerase II and DNA. This complex induces breaks in double stranded DNA and prevents repair by topoisomerase II binding. Accumulated breaks in DNA prevent entry into the mitotic phase of cell division, and lead to cell death. Etoposide acts primarily in the G2 and S phases of the cell cycle. [PubChem]
Structure
Thumb
Synonyms
ValueSource
(-)-EtoposideChEBI
4'-Demethylepipodophyllotoxin 9-(4,6-O-(R)-ethylidene-beta-D-glucopyranoside)ChEBI
4-Demethylepipodophyllotoxin beta-D-ethylideneglucosideChEBI
9-((4,6-O-Ethylidine-beta-D-glucopyranosyl)oxy)-5,8,8a,9-tetrahydro-5-(4-hydroxy-3,4-dimethyloxyphenyl)furo(3',4'':6,7)naptho-(2,3-D)-1,3-dioxol-6(5ah)-oneChEBI
EposinChEBI
EtopophosChEBI
EtoposidoChEBI
EtoposidumChEBI
LastetChEBI
ToposarChEBI
trans-EtoposideChEBI
VepesidChEBI
VP-16ChEBI
4'-Demethylepipodophyllotoxin 9-(4,6-O-(R)-ethylidene-b-D-glucopyranoside)Generator
4'-Demethylepipodophyllotoxin 9-(4,6-O-(R)-ethylidene-β-D-glucopyranoside)Generator
4-Demethylepipodophyllotoxin b-D-ethylideneglucosideGenerator
4-Demethylepipodophyllotoxin β-D-ethylideneglucosideGenerator
9-((4,6-O-Ethylidine-b-D-glucopyranosyl)oxy)-5,8,8a,9-tetrahydro-5-(4-hydroxy-3,4-dimethyloxyphenyl)furo(3',4'':6,7)naptho-(2,3-D)-1,3-dioxol-6(5ah)-oneGenerator
9-((4,6-O-Ethylidine-β-D-glucopyranosyl)oxy)-5,8,8a,9-tetrahydro-5-(4-hydroxy-3,4-dimethyloxyphenyl)furo(3',4'':6,7)naptho-(2,3-D)-1,3-dioxol-6(5ah)-oneGenerator
Chemical FormulaC29H32O13
Average Molecular Weight588.5566
Monoisotopic Molecular Weight588.18429111
IUPAC Name(10R,11R,15R,16S)-16-{[(2R,4aR,6R,7R,8R,8aS)-7,8-dihydroxy-2-methyl-hexahydro-2H-pyrano[3,2-d][1,3]dioxin-6-yl]oxy}-10-(4-hydroxy-3,5-dimethoxyphenyl)-4,6,13-trioxatetracyclo[7.7.0.0³,⁷.0¹¹,¹⁵]hexadeca-1,3(7),8-trien-12-one
Traditional Nameetoposide
CAS Registry Number33419-42-0
SMILES
[H][C@]12COC(=O)[C@]1([H])[C@H](C1=CC(OC)=C(O)C(OC)=C1)C1=CC3=C(OCO3)C=C1[C@H]2O[C@@H]1O[C@]2([H])CO[C@@H](C)O[C@@]2([H])[C@H](O)[C@H]1O
InChI Identifier
InChI=1S/C29H32O13/c1-11-36-9-20-27(40-11)24(31)25(32)29(41-20)42-26-14-7-17-16(38-10-39-17)6-13(14)21(22-15(26)8-37-28(22)33)12-4-18(34-2)23(30)19(5-12)35-3/h4-7,11,15,20-22,24-27,29-32H,8-10H2,1-3H3/t11-,15+,20-,21-,22+,24-,25-,26-,27-,29+/m1/s1
InChI KeyInChIKey=VJJPUSNTGOMMGY-MRVIYFEKSA-N
Chemical Taxonomy
DescriptionThis compound belongs to the class of organic compounds known as podophyllotoxins. These are tetralin lignans in which the benzene moiety of the tetralin skeleton is fused to a 1,3-dioxolane and the cyclohexane is fused to a butyrolactone (pyrrolidin-2-one).
KingdomOrganic compounds
Super ClassLignans, neolignans and related compounds
ClassLignan lactones
Sub ClassPodophyllotoxins
Direct ParentPodophyllotoxins
Alternative Parents
Substituents
  • Podophyllotoxin
  • 1-aryltetralin lignan
  • M-dimethoxybenzene
  • Dimethoxybenzene
  • Tetralin
  • Pyranodioxin
  • Methoxyphenol
  • Benzodioxole
  • Methoxybenzene
  • Phenol ether
  • Anisole
  • Phenol
  • Alkyl aryl ether
  • Benzenoid
  • Oxane
  • Monosaccharide
  • Gamma butyrolactone
  • Monocyclic benzene moiety
  • Meta-dioxane
  • Oxolane
  • Secondary alcohol
  • Lactone
  • Carboxylic acid ester
  • 1,2-diol
  • Oxacycle
  • Organoheterocyclic compound
  • Monocarboxylic acid or derivatives
  • Ether
  • Carboxylic acid derivative
  • Acetal
  • Hydrocarbon derivative
  • Organooxygen compound
  • Carbonyl group
  • Alcohol
  • Aromatic heteropolycyclic compound
Molecular FrameworkAromatic heteropolycyclic compounds
External Descriptors
Ontology
StatusExpected but not Quantified
Origin
  • Drug
Biofunction
  • Antineoplastic Agents, Phytogenic
  • Nucleic Acid Synthesis Inhibitors
Application
  • Pharmaceutical
Cellular locations
  • Cytoplasm
  • Membrane
Physical Properties
StateSolid
Experimental Properties
PropertyValueReference
Melting Point236 - 251 °CNot Available
Boiling PointNot AvailableNot Available
Water Solubility9.78e-01 g/LNot Available
LogP1Not Available
Predicted Properties
PropertyValueSource
Water Solubility0.98 mg/mLALOGPS
logP0.73ALOGPS
logP1.16ChemAxon
logS-2.8ALOGPS
pKa (Strongest Acidic)9.33ChemAxon
pKa (Strongest Basic)-3.7ChemAxon
Physiological Charge0ChemAxon
Hydrogen Acceptor Count12ChemAxon
Hydrogen Donor Count3ChemAxon
Polar Surface Area160.83 Å2ChemAxon
Rotatable Bond Count5ChemAxon
Refractivity139.02 m3·mol-1ChemAxon
Polarizability58.77 Å3ChemAxon
Number of Rings7ChemAxon
Bioavailability0ChemAxon
Rule of FiveYesChemAxon
Ghose FilterYesChemAxon
Veber's RuleYesChemAxon
MDDR-like RuleYesChemAxon
Spectra
Spectra
Spectrum TypeDescriptionSplash Key
1D NMR1H NMR SpectrumNot Available
1D NMR13C NMR SpectrumNot Available
Biological Properties
Cellular Locations
  • Cytoplasm
  • Membrane
Biofluid Locations
  • Blood
  • Urine
Tissue LocationNot Available
Pathways
NameSMPDB LinkKEGG Link
Etoposide Metabolism PathwaySMP00601Not Available
Etoposide PathwaySMP00442Not Available
Normal Concentrations
BiofluidStatusValueAgeSexConditionReferenceDetails
BloodExpected but not QuantifiedNot ApplicableNot AvailableNot AvailableTaking drug identified by DrugBank entry DB00773
  • Not Applicable
details
UrineExpected but not QuantifiedNot ApplicableNot AvailableNot AvailableTaking drug identified by DrugBank entry DB00773
  • Not Applicable
details
Abnormal Concentrations
Not Available
Predicted Concentrations
BiofluidValueOriginal ageOriginal sexOriginal conditionComments
Blood0-2 uMAdult (>18 years old)BothNormalPredicted based on drug qualities
Blood0-1 umol/mmol creatinineAdult (>18 years old)BothNormalPredicted based on drug qualities
Associated Disorders and Diseases
Disease ReferencesNone
Associated OMIM IDsNone
DrugBank IDDB00773
DrugBank Metabolite IDNot Available
Phenol Explorer Compound IDNot Available
Phenol Explorer Metabolite IDNot Available
FoodDB IDNot Available
KNApSAcK IDNot Available
Chemspider ID33510
KEGG Compound IDC01576
BioCyc IDNot Available
BiGG IDNot Available
Wikipedia LinkEtoposide
NuGOwiki LinkHMDB14911
Metagene LinkHMDB14911
METLIN IDNot Available
PubChem Compound36462
PDB IDEVP
ChEBI ID4911
References
Synthesis ReferenceNot Available
Material Safety Data Sheet (MSDS)Not Available
General References
  1. Azarova AM, Lyu YL, Lin CP, Tsai YC, Lau JY, Wang JC, Liu LF: Roles of DNA topoisomerase II isozymes in chemotherapy and secondary malignancies. Proc Natl Acad Sci U S A. 2007 Jun 26;104(26):11014-9. Epub 2007 Jun 19. [17578914 ]
  2. Zhou Z, Zwelling LA, Ganapathi R, Kleinerman ES: Enhanced etoposide sensitivity following adenovirus-mediated human topoisomerase IIalpha gene transfer is independent of topoisomerase IIbeta. Br J Cancer. 2001 Sep 1;85(5):747-51. [11531262 ]

Enzymes

General function:
Involved in monooxygenase activity
Specific function:
Cytochromes P450 are a group of heme-thiolate monooxygenases. In liver microsomes, this enzyme is involved in an NADPH-dependent electron transport pathway. It performs a variety of oxidation reactions (e.g. caffeine 8-oxidation, omeprazole sulphoxidation, midazolam 1'-hydroxylation and midazolam 4-hydroxylation) of structurally unrelated compounds, including steroids, fatty acids, and xenobiotics. Acts as a 1,8-cineole 2-exo-monooxygenase. The enzyme also hydroxylates etoposide.
Gene Name:
CYP3A4
Uniprot ID:
P08684
Molecular weight:
57255.585
References
  1. Preissner S, Kroll K, Dunkel M, Senger C, Goldsobel G, Kuzman D, Guenther S, Winnenburg R, Schroeder M, Preissner R: SuperCYP: a comprehensive database on Cytochrome P450 enzymes including a tool for analysis of CYP-drug interactions. Nucleic Acids Res. 2010 Jan;38(Database issue):D237-43. Epub 2009 Nov 24. [19934256 ]
  2. Kawashiro T, Yamashita K, Zhao XJ, Koyama E, Tani M, Chiba K, Ishizaki T: A study on the metabolism of etoposide and possible interactions with antitumor or supporting agents by human liver microsomes. J Pharmacol Exp Ther. 1998 Sep;286(3):1294-300. [9732391 ]
General function:
Involved in monooxygenase activity
Specific function:
Metabolizes several precarcinogens, drugs, and solvents to reactive metabolites. Inactivates a number of drugs and xenobiotics and also bioactivates many xenobiotic substrates to their hepatotoxic or carcinogenic forms.
Gene Name:
CYP2E1
Uniprot ID:
P05181
Molecular weight:
56848.42
References
  1. Preissner S, Kroll K, Dunkel M, Senger C, Goldsobel G, Kuzman D, Guenther S, Winnenburg R, Schroeder M, Preissner R: SuperCYP: a comprehensive database on Cytochrome P450 enzymes including a tool for analysis of CYP-drug interactions. Nucleic Acids Res. 2010 Jan;38(Database issue):D237-43. Epub 2009 Nov 24. [19934256 ]
General function:
Involved in monooxygenase activity
Specific function:
Cytochromes P450 are a group of heme-thiolate monooxygenases. In liver microsomes, this enzyme is involved in an NADPH-dependent electron transport pathway. It oxidizes a variety of structurally unrelated compounds, including steroids, fatty acids, and xenobiotics.
Gene Name:
CYP3A5
Uniprot ID:
P20815
Molecular weight:
57108.065
References
  1. Preissner S, Kroll K, Dunkel M, Senger C, Goldsobel G, Kuzman D, Guenther S, Winnenburg R, Schroeder M, Preissner R: SuperCYP: a comprehensive database on Cytochrome P450 enzymes including a tool for analysis of CYP-drug interactions. Nucleic Acids Res. 2010 Jan;38(Database issue):D237-43. Epub 2009 Nov 24. [19934256 ]
General function:
Involved in monooxygenase activity
Specific function:
Cytochromes P450 are a group of heme-thiolate monooxygenases. In liver microsomes, this enzyme is involved in an NADPH-dependent electron transport pathway. It oxidizes a variety of structurally unrelated compounds, including steroids, fatty acids, and xenobiotics. Most active in catalyzing 2-hydroxylation. Caffeine is metabolized primarily by cytochrome CYP1A2 in the liver through an initial N3-demethylation. Also acts in the metabolism of aflatoxin B1 and acetaminophen. Participates in the bioactivation of carcinogenic aromatic and heterocyclic amines. Catalizes the N-hydroxylation of heterocyclic amines and the O-deethylation of phenacetin.
Gene Name:
CYP1A2
Uniprot ID:
P05177
Molecular weight:
58406.915
References
  1. Preissner S, Kroll K, Dunkel M, Senger C, Goldsobel G, Kuzman D, Guenther S, Winnenburg R, Schroeder M, Preissner R: SuperCYP: a comprehensive database on Cytochrome P450 enzymes including a tool for analysis of CYP-drug interactions. Nucleic Acids Res. 2010 Jan;38(Database issue):D237-43. Epub 2009 Nov 24. [19934256 ]
General function:
Involved in monooxygenase activity
Specific function:
Cytochromes P450 are a group of heme-thiolate monooxygenases. In liver microsomes, this enzyme is involved in an NADPH-dependent electron transport pathway. It oxidizes a variety of structurally unrelated compounds, including steroids, fatty acids, and xenobiotics. In the epoxidation of arachidonic acid it generates only 14,15- and 11,12-cis-epoxyeicosatrienoic acids. It is the principal enzyme responsible for the metabolism the anti-cancer drug paclitaxel (taxol).
Gene Name:
CYP2C8
Uniprot ID:
P10632
Molecular weight:
55824.275
References
  1. Preissner S, Kroll K, Dunkel M, Senger C, Goldsobel G, Kuzman D, Guenther S, Winnenburg R, Schroeder M, Preissner R: SuperCYP: a comprehensive database on Cytochrome P450 enzymes including a tool for analysis of CYP-drug interactions. Nucleic Acids Res. 2010 Jan;38(Database issue):D237-43. Epub 2009 Nov 24. [19934256 ]
General function:
Involved in sequence-specific DNA binding transcription factor activity
Specific function:
Control of topological states of DNA by transient breakage and subsequent rejoining of DNA strands. Topoisomerase II makes double-strand breaks
Gene Name:
TOP2A
Uniprot ID:
P11388
Molecular weight:
174383.9
References
  1. de Lucio B, Manuel V, Barrera-Rodriguez R: Characterization of human NSCLC cell line with innate etoposide-resistance mediated by cytoplasmic localization of topoisomerase II alpha. Cancer Sci. 2005 Nov;96(11):774-83. [16271071 ]
  2. Lopez-Lazaro M, Pastor N, Azrak SS, Ayuso MJ, Austin CA, Cortes F: Digitoxin inhibits the growth of cancer cell lines at concentrations commonly found in cardiac patients. J Nat Prod. 2005 Nov;68(11):1642-5. [16309315 ]
  3. Moneypenny CG, Shao J, Song Y, Gallagher EP: MLL rearrangements are induced by low doses of etoposide in human fetal hematopoietic stem cells. Carcinogenesis. 2006 Apr;27(4):874-81. Epub 2005 Dec 24. [16377807 ]
  4. Uesaka T, Shono T, Kuga D, Suzuki SO, Niiro H, Miyamoto K, Matsumoto K, Mizoguchi M, Ohta M, Iwaki T, Sasaki T: Enhanced expression of DNA topoisomerase II genes in human medulloblastoma and its possible association with etoposide sensitivity. J Neurooncol. 2007 Sep;84(2):119-29. Epub 2007 Mar 15. [17361331 ]
  5. Winnicka K, Bielawski K, Bielawska A: Cardiac glycosides in cancer research and cancer therapy. Acta Pol Pharm. 2006 Mar-Apr;63(2):109-15. [17514873 ]
  6. Chen X, Ji ZL, Chen YZ: TTD: Therapeutic Target Database. Nucleic Acids Res. 2002 Jan 1;30(1):412-5. [11752352 ]

Transporters

General function:
Involved in ATP binding
Specific function:
Mediates hepatobiliary excretion of numerous organic anions. May function as a cellular cisplatin transporter
Gene Name:
ABCC2
Uniprot ID:
Q92887
Molecular weight:
174205.6
References
  1. Tang F, Horie K, Borchardt RT: Are MDCK cells transfected with the human MRP2 gene a good model of the human intestinal mucosa? Pharm Res. 2002 Jun;19(6):773-9. [12134946 ]
  2. Guo A, Marinaro W, Hu P, Sinko PJ: Delineating the contribution of secretory transporters in the efflux of etoposide using Madin-Darby canine kidney (MDCK) cells overexpressing P-glycoprotein (Pgp), multidrug resistance-associated protein (MRP1), and canalicular multispecific organic anion transporter (cMOAT). Drug Metab Dispos. 2002 Apr;30(4):457-63. [11901101 ]
General function:
Involved in ATP binding
Specific function:
Mediates export of organic anions and drugs from the cytoplasm. Mediates ATP-dependent transport of glutathione and glutathione conjugates, leukotriene C4, estradiol-17-beta-o- glucuronide, methotrexate, antiviral drugs and other xenobiotics. Confers resistance to anticancer drugs. Hydrolyzes ATP with low efficiency
Gene Name:
ABCC1
Uniprot ID:
P33527
Molecular weight:
171589.5
References
  1. Heijn M, Hooijberg JH, Scheffer GL, Szabo G, Westerhoff HV, Lankelma J: Anthracyclines modulate multidrug resistance protein (MRP) mediated organic anion transport. Biochim Biophys Acta. 1997 May 22;1326(1):12-22. [9188796 ]
  2. Guo A, Marinaro W, Hu P, Sinko PJ: Delineating the contribution of secretory transporters in the efflux of etoposide using Madin-Darby canine kidney (MDCK) cells overexpressing P-glycoprotein (Pgp), multidrug resistance-associated protein (MRP1), and canalicular multispecific organic anion transporter (cMOAT). Drug Metab Dispos. 2002 Apr;30(4):457-63. [11901101 ]
  3. Godinot N, Iversen PW, Tabas L, Xia X, Williams DC, Dantzig AH, Perry WL 3rd: Cloning and functional characterization of the multidrug resistance-associated protein (MRP1/ABCC1) from the cynomolgus monkey. Mol Cancer Ther. 2003 Mar;2(3):307-16. [12657726 ]
  4. Nunoya K, Grant CE, Zhang D, Cole SP, Deeley RG: Molecular cloning and pharmacological characterization of rat multidrug resistance protein 1 (mrp1). Drug Metab Dispos. 2003 Aug;31(8):1016-26. [12867490 ]
  5. Stride BD, Grant CE, Loe DW, Hipfner DR, Cole SP, Deeley RG: Pharmacological characterization of the murine and human orthologs of multidrug-resistance protein in transfected human embryonic kidney cells. Mol Pharmacol. 1997 Sep;52(3):344-53. [9281595 ]
  6. Wong IL, Chan KF, Tsang KH, Lam CY, Zhao Y, Chan TH, Chow LM: Modulation of multidrug resistance protein 1 (MRP1/ABCC1)-mediated multidrug resistance by bivalent apigenin homodimers and their derivatives. J Med Chem. 2009 Sep 10;52(17):5311-22. [19725578 ]
General function:
Involved in ATP binding
Specific function:
May participate directly in the active transport of drugs into subcellular organelles or influence drug distribution indirectly. Transports glutathione conjugates as leukotriene-c4 (LTC4) and N-ethylmaleimide S-glutathione (NEM-GS)
Gene Name:
ABCC6
Uniprot ID:
O95255
Molecular weight:
164904.8
References
  1. Cai J, Daoud R, Alqawi O, Georges E, Pelletier J, Gros P: Nucleotide binding and nucleotide hydrolysis properties of the ABC transporter MRP6 (ABCC6). Biochemistry. 2002 Jun 25;41(25):8058-67. [12069597 ]
  2. Belinsky MG, Chen ZS, Shchaveleva I, Zeng H, Kruh GD: Characterization of the drug resistance and transport properties of multidrug resistance protein 6 (MRP6, ABCC6). Cancer Res. 2002 Nov 1;62(21):6172-7. [12414644 ]
General function:
Involved in ATP binding
Specific function:
May act as an inducible transporter in the biliary and intestinal excretion of organic anions. Acts as an alternative route for the export of bile acids and glucuronides from cholestatic hepatocytes
Gene Name:
ABCC3
Uniprot ID:
O15438
Molecular weight:
169341.1
References
  1. Zeng H, Chen ZS, Belinsky MG, Rea PA, Kruh GD: Transport of methotrexate (MTX) and folates by multidrug resistance protein (MRP) 3 and MRP1: effect of polyglutamylation on MTX transport. Cancer Res. 2001 Oct 1;61(19):7225-32. [11585759 ]
  2. Zehnpfennig B, Urbatsch IL, Galla HJ: Functional reconstitution of human ABCC3 into proteoliposomes reveals a transport mechanism with positive cooperativity. Biochemistry. 2009 May 26;48(20):4423-30. [19334674 ]
  3. Zelcer N, Saeki T, Reid G, Beijnen JH, Borst P: Characterization of drug transport by the human multidrug resistance protein 3 (ABCC3). J Biol Chem. 2001 Dec 7;276(49):46400-7. [11581266 ]
General function:
Involved in ATP binding
Specific function:
Energy-dependent efflux pump responsible for decreased drug accumulation in multidrug-resistant cells
Gene Name:
ABCB1
Uniprot ID:
P08183
Molecular weight:
141477.3
References
  1. Gao J, Murase O, Schowen RL, Aube J, Borchardt RT: A functional assay for quantitation of the apparent affinities of ligands of P-glycoprotein in Caco-2 cells. Pharm Res. 2001 Feb;18(2):171-6. [11405287 ]
  2. Polli JW, Wring SA, Humphreys JE, Huang L, Morgan JB, Webster LO, Serabjit-Singh CS: Rational use of in vitro P-glycoprotein assays in drug discovery. J Pharmacol Exp Ther. 2001 Nov;299(2):620-8. [11602674 ]
  3. Tang F, Horie K, Borchardt RT: Are MDCK cells transfected with the human MDR1 gene a good model of the human intestinal mucosa? Pharm Res. 2002 Jun;19(6):765-72. [12134945 ]
  4. Schwab D, Fischer H, Tabatabaei A, Poli S, Huwyler J: Comparison of in vitro P-glycoprotein screening assays: recommendations for their use in drug discovery. J Med Chem. 2003 Apr 24;46(9):1716-25. [12699389 ]
  5. Nagy H, Goda K, Fenyvesi F, Bacso Z, Szilasi M, Kappelmayer J, Lustyik G, Cianfriglia M, Szabo G Jr: Distinct groups of multidrug resistance modulating agents are distinguished by competition of P-glycoprotein-specific antibodies. Biochem Biophys Res Commun. 2004 Mar 19;315(4):942-9. [14985103 ]
  6. Guo A, Marinaro W, Hu P, Sinko PJ: Delineating the contribution of secretory transporters in the efflux of etoposide using Madin-Darby canine kidney (MDCK) cells overexpressing P-glycoprotein (Pgp), multidrug resistance-associated protein (MRP1), and canalicular multispecific organic anion transporter (cMOAT). Drug Metab Dispos. 2002 Apr;30(4):457-63. [11901101 ]
  7. Troutman MD, Thakker DR: Novel experimental parameters to quantify the modulation of absorptive and secretory transport of compounds by P-glycoprotein in cell culture models of intestinal epithelium. Pharm Res. 2003 Aug;20(8):1210-24. [12948019 ]
General function:
Involved in ATP binding
Specific function:
Xenobiotic transporter that may play an important role in the exclusion of xenobiotics from the brain. May be involved in brain-to-blood efflux. Appears to play a major role in the multidrug resistance phenotype of several cancer cell lines. When overexpressed, the transfected cells become resistant to mitoxantrone, daunorubicin and doxorubicin, display diminished intracellular accumulation of daunorubicin, and manifest an ATP- dependent increase in the efflux of rhodamine 123
Gene Name:
ABCG2
Uniprot ID:
Q9UNQ0
Molecular weight:
72313.5
References
  1. Wang X, Furukawa T, Nitanda T, Okamoto M, Sugimoto Y, Akiyama S, Baba M: Breast cancer resistance protein (BCRP/ABCG2) induces cellular resistance to HIV-1 nucleoside reverse transcriptase inhibitors. Mol Pharmacol. 2003 Jan;63(1):65-72. [12488537 ]
  2. Allen JD, Van Dort SC, Buitelaar M, van Tellingen O, Schinkel AH: Mouse breast cancer resistance protein (Bcrp1/Abcg2) mediates etoposide resistance and transport, but etoposide oral availability is limited primarily by P-glycoprotein. Cancer Res. 2003 Mar 15;63(6):1339-44. [12649196 ]