Hmdb loader
Survey
Identification
HMDB Protein ID HMDBP13744
Secondary Accession Numbers None
Name Heat shock protein HSP 90-alpha
Synonyms
  1. Heat shock 86 kDa
  2. Tumor-specific transplantation 86 kDa antigen
  3. HSP 86
  4. HSP86
  5. TSTA
Gene Name HSP90AA1
Protein Type Unknown
Biological Properties
General Function Not Available
Specific Function Molecular chaperone that promotes the maturation, structural maintenance and proper regulation of specific target proteins involved for instance in cell cycle control and signal transduction. Undergoes a functional cycle that is linked to its ATPase activity which is essential for its chaperone activity. This cycle probably induces conformational changes in the client proteins, thereby causing their activation. Interacts dynamically with various co-chaperones that modulate its substrate recognition, ATPase cycle and chaperone function. Engages with a range of client protein classes via its interaction with various co-chaperone proteins or complexes, that act as adapters, simultaneously able to interact with the specific client and the central chaperone itself. Recruitment of ATP and co-chaperone followed by client protein forms a functional chaperone. After the completion of the chaperoning process, properly folded client protein and co-chaperone leave HSP90 in an ADP-bound partially open conformation and finally, ADP is released from HSP90 which acquires an open conformation for the next cycle. Plays a critical role in mitochondrial import, delivers preproteins to the mitochondrial import receptor TOMM70. Apart from its chaperone activity, it also plays a role in the regulation of the transcription machinery. HSP90 and its co-chaperones modulate transcription at least at three different levels. In the first place, they alter the steady-state levels of certain transcription factors in response to various physiological cues. Second, they modulate the activity of certain epigenetic modifiers, such as histone deacetylases or DNA methyl transferases, and thereby respond to the change in the environment. Third, they participate in the eviction of histones from the promoter region of certain genes and thereby turn on gene expression. Binds bacterial lipopolysaccharide (LPS) and mediates LPS-induced inflammatory response, including TNF secretion by monocytes. Antagonizes STUB1-mediated inhibition of TGF-beta signaling via inhibition of STUB1-mediated SMAD3 ubiquitination and degradation. Mediates the association of TOMM70 with IRF3 or TBK1 in mitochodria outer membrane which promotes host antiviral response.
Pathways
  • Antigen processing and presentation
  • Chemical carcinogenesis - receptor activation
  • Estrogen signaling pathway
  • Fluid shear stress and atherosclerosis
  • IL-17 signaling pathway
  • Lipid and atherosclerosis
  • Necroptosis
  • NOD-like receptor signaling pathway
  • PI3K-Akt signaling pathway
  • Progesterone-mediated oocyte maturation
  • Prostate cancer
  • Protein processing in endoplasmic reticulum
  • Salmonella infection
  • Th17 cell differentiation
Reactions Not Available
GO Classification
Biological Process
protein refolding
response to heat
protein folding
positive regulation of protein import into nucleus
central nervous system neuron axonogenesis
protein stabilization
activation of innate immune response
neuron migration
cellular response to virus
chaperone-mediated protein complex assembly
establishment of cell polarity
positive regulation of cellular protein catabolic process
positive regulation of cytotoxic T cell differentiation
positive regulation of protein polymerization
positive regulation of tau-protein kinase activity
positive regulation of telomerase activity
positive regulation of cell size
protein insertion into mitochondrial outer membrane
regulation of cellular protein localization
regulation of protein ubiquitination
telomerase holoenzyme complex assembly
positive regulation of protein phosphorylation
positive regulation of interferon-beta production
positive regulation of nitric oxide biosynthetic process
positive regulation of lamellipodium assembly
positive regulation of defense response to virus by host
positive regulation of protein kinase B signaling cascade
regulation of apoptotic process
response to unfolded protein
response to antibiotic
telomere maintenance via telomerase
axon extension
positive regulation of peptidyl-serine phosphorylation
nitric oxide biosynthetic process
response to cold
cellular response to heat
Cellular Component
cytosol
cell surface
protein-containing complex
cytoplasm
mitochondrion
plasma membrane
perinuclear region of cytoplasm
nucleus
axonal growth cone
dendritic growth cone
sperm mitochondrial sheath
basolateral plasma membrane
melanosome
myelin sheath
sperm flagellum
sperm plasma membrane
collagen-containing extracellular matrix
neuronal cell body
brush border membrane
apical plasma membrane
neuron projection
Molecular Function
protein folding chaperone
unfolded protein binding
DNA polymerase binding
CTP binding
histone deacetylase binding
Rho GDP-dissociation inhibitor binding
scaffold protein binding
ATP binding
sulfonylurea receptor binding
tau protein binding
TPR domain binding
ubiquitin protein ligase binding
ion channel binding
disordered domain specific binding
dATP binding
protein homodimerization activity
UTP binding
nitric-oxide synthase regulator activity
ATPase activity
GTP binding
GTPase binding
identical protein binding
mRNA binding
protein phosphatase binding
protein tyrosine kinase binding
Cellular Location Not Available
Gene Properties
Chromosome Location Not Available
Locus Not Available
SNPs Not Available
Gene Sequence Not Available
Protein Properties
Number of Residues 733
Molecular Weight 84787.19
Theoretical pI 5.003
Pfam Domain Function
Signals Not Available
Transmembrane Regions Not Available
Protein Sequence Not Available
GenBank ID Protein Not Available
UniProtKB/Swiss-Prot ID P07901
UniProtKB/Swiss-Prot Entry Name HS90A_MOUSE
PDB IDs
GenBank Gene ID Not Available
GeneCard ID Not Available
GenAtlas ID Not Available
HGNC ID Not Available
References
General References
  1. Gerhard DS, Wagner L, Feingold EA, Shenmen CM, Grouse LH, Schuler G, Klein SL, Old S, Rasooly R, Good P, Guyer M, Peck AM, Derge JG, Lipman D, Collins FS, Jang W, Sherry S, Feolo M, Misquitta L, Lee E, Rotmistrovsky K, Greenhut SF, Schaefer CF, Buetow K, Bonner TI, Haussler D, Kent J, Kiekhaus M, Furey T, Brent M, Prange C, Schreiber K, Shapiro N, Bhat NK, Hopkins RF, Hsie F, Driscoll T, Soares MB, Casavant TL, Scheetz TE, Brown-stein MJ, Usdin TB, Toshiyuki S, Carninci P, Piao Y, Dudekula DB, Ko MS, Kawakami K, Suzuki Y, Sugano S, Gruber CE, Smith MR, Simmons B, Moore T, Waterman R, Johnson SL, Ruan Y, Wei CL, Mathavan S, Gunaratne PH, Wu J, Garcia AM, Hulyk SW, Fuh E, Yuan Y, Sneed A, Kowis C, Hodgson A, Muzny DM, McPherson J, Gibbs RA, Fahey J, Helton E, Ketteman M, Madan A, Rodrigues S, Sanchez A, Whiting M, Madari A, Young AC, Wetherby KD, Granite SJ, Kwong PN, Brinkley CP, Pearson RL, Bouffard GG, Blakesly RW, Green ED, Dickson MC, Rodriguez AC, Grimwood J, Schmutz J, Myers RM, Butterfield YS, Griffith M, Griffith OL, Krzywinski MI, Liao N, Morin R, Palmquist D, Petrescu AS, Skalska U, Smailus DE, Stott JM, Schnerch A, Schein JE, Jones SJ, Holt RA, Baross A, Marra MA, Clifton S, Makowski KA, Bosak S, Malek J: The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC). Genome Res. 2004 Oct;14(10B):2121-7. [PubMed:15489334 ]
  2. Lees-Miller SP, Anderson CW: The human double-stranded DNA-activated protein kinase phosphorylates the 90-kDa heat-shock protein, hsp90 alpha at two NH2-terminal threonine residues. J Biol Chem. 1989 Oct 15;264(29):17275-80. [PubMed:2507541 ]
  3. Hoffmann T, Hovemann B: Heat-shock proteins, Hsp84 and Hsp86, of mice and men: two related genes encode formerly identified tumour-specific transplantation antigens. Gene. 1988 Dec 30;74(2):491-501. [PubMed:2469626 ]
  4. Huttlin EL, Jedrychowski MP, Elias JE, Goswami T, Rad R, Beausoleil SA, Villen J, Haas W, Sowa ME, Gygi SP: A tissue-specific atlas of mouse protein phosphorylation and expression. Cell. 2010 Dec 23;143(7):1174-89. doi: 10.1016/j.cell.2010.12.001. [PubMed:21183079 ]
  5. Villen J, Beausoleil SA, Gerber SA, Gygi SP: Large-scale phosphorylation analysis of mouse liver. Proc Natl Acad Sci U S A. 2007 Jan 30;104(5):1488-93. doi: 10.1073/pnas.0609836104. Epub 2007 Jan 22. [PubMed:17242355 ]
  6. Trost M, English L, Lemieux S, Courcelles M, Desjardins M, Thibault P: The phagosomal proteome in interferon-gamma-activated macrophages. Immunity. 2009 Jan 16;30(1):143-54. doi: 10.1016/j.immuni.2008.11.006. [PubMed:19144319 ]
  7. Park J, Chen Y, Tishkoff DX, Peng C, Tan M, Dai L, Xie Z, Zhang Y, Zwaans BM, Skinner ME, Lombard DB, Zhao Y: SIRT5-mediated lysine desuccinylation impacts diverse metabolic pathways. Mol Cell. 2013 Jun 27;50(6):919-30. doi: 10.1016/j.molcel.2013.06.001. [PubMed:23806337 ]
  8. Giannakopoulos NV, Luo JK, Papov V, Zou W, Lenschow DJ, Jacobs BS, Borden EC, Li J, Virgin HW, Zhang DE: Proteomic identification of proteins conjugated to ISG15 in mouse and human cells. Biochem Biophys Res Commun. 2005 Oct 21;336(2):496-506. doi: 10.1016/j.bbrc.2005.08.132. [PubMed:16139798 ]
  9. Ballif BA, Carey GR, Sunyaev SR, Gygi SP: Large-scale identification and evolution indexing of tyrosine phosphorylation sites from murine brain. J Proteome Res. 2008 Jan;7(1):311-8. doi: 10.1021/pr0701254. Epub 2007 Nov 23. [PubMed:18034455 ]
  10. Zhou H, Ye M, Dong J, Han G, Jiang X, Wu R, Zou H: Specific phosphopeptide enrichment with immobilized titanium ion affinity chromatography adsorbent for phosphoproteome analysis. J Proteome Res. 2008 Sep;7(9):3957-67. doi: 10.1021/pr800223m. Epub 2008 Jul 17. [PubMed:18630941 ]
  11. Lee J, Xu Y, Chen Y, Sprung R, Kim SC, Xie S, Zhao Y: Mitochondrial phosphoproteome revealed by an improved IMAC method and MS/MS/MS. Mol Cell Proteomics. 2007 Apr;6(4):669-76. doi: 10.1074/mcp.M600218-MCP200. Epub 2007 Jan 5. [PubMed:17208939 ]
  12. Moore SK, Kozak C, Robinson EA, Ullrich SJ, Appella E: Murine 86- and 84-kDa heat shock proteins, cDNA sequences, chromosome assignments, and evolutionary origins. J Biol Chem. 1989 Apr 5;264(10):5343-51. [PubMed:2925609 ]
  13. Moore SK, Appella E, Villar CJ, Kozak CA: Mapping of the mouse 86-kDa heat-shock protein expressed gene (Hsp86-1) on chromosome 12 and related genes on chromosomes 3, 4, 9, and 11. Genomics. 1991 Aug;10(4):1019-29. doi: 10.1016/0888-7543(91)90193-i. [PubMed:1916807 ]
  14. Ullrich SJ, Robinson EA, Law LW, Willingham M, Appella E: A mouse tumor-specific transplantation antigen is a heat shock-related protein. Proc Natl Acad Sci U S A. 1986 May;83(10):3121-5. doi: 10.1073/pnas.83.10.3121. [PubMed:3458168 ]
  15. Minami Y, Kimura Y, Kawasaki H, Suzuki K, Yahara I: The carboxy-terminal region of mammalian HSP90 is required for its dimerization and function in vivo. Mol Cell Biol. 1994 Feb;14(2):1459-64. doi: 10.1128/mcb.14.2.1459-1464.1994. [PubMed:8289821 ]
  16. Legagneux V, Mezger V, Quelard C, Barnier JV, Bensaude O, Morange M: High constitutive transcription of HSP86 gene in murine embryonal carcinoma cells. Differentiation. 1989 Jul;41(1):42-8. doi: 10.1111/j.1432-0436.1989.tb00730.x. [PubMed:2806771 ]
  17. Stewart S, Sundaram M, Zhang Y, Lee J, Han M, Guan KL: Kinase suppressor of Ras forms a multiprotein signaling complex and modulates MEK localization. Mol Cell Biol. 1999 Aug;19(8):5523-34. doi: 10.1128/MCB.19.8.5523. [PubMed:10409742 ]
  18. Silverstein AM, Galigniana MD, Chen MS, Owens-Grillo JK, Chinkers M, Pratt WB: Protein phosphatase 5 is a major component of glucocorticoid receptor.hsp90 complexes with properties of an FK506-binding immunophilin. J Biol Chem. 1997 Jun 27;272(26):16224-30. doi: 10.1074/jbc.272.26.16224. [PubMed:9195923 ]
  19. Galigniana MD, Radanyi C, Renoir JM, Housley PR, Pratt WB: Evidence that the peptidylprolyl isomerase domain of the hsp90-binding immunophilin FKBP52 is involved in both dynein interaction and glucocorticoid receptor movement to the nucleus. J Biol Chem. 2001 May 4;276(18):14884-9. doi: 10.1074/jbc.M010809200. Epub 2001 Feb 13. [PubMed:11278753 ]
  20. Cao L, Yu K, Banh C, Nguyen V, Ritz A, Raphael BJ, Kawakami Y, Kawakami T, Salomon AR: Quantitative time-resolved phosphoproteomic analysis of mast cell signaling. J Immunol. 2007 Nov 1;179(9):5864-76. doi: 10.4049/jimmunol.179.9.5864. [PubMed:17947660 ]
  21. Sarkar AA, Zohn IE: Hectd1 regulates intracellular localization and secretion of Hsp90 to control cellular behavior of the cranial mesenchyme. J Cell Biol. 2012 Mar 19;196(6):789-800. doi: 10.1083/jcb.201105101. [PubMed:22431752 ]
  22. Okabe T, Chavan R, Fonseca Costa SS, Brenna A, Ripperger JA, Albrecht U: REV-ERBalpha influences the stability and nuclear localization of the glucocorticoid receptor. J Cell Sci. 2016 Nov 1;129(21):4143-4154. doi: 10.1242/jcs.190959. Epub 2016 Sep 29. [PubMed:27686098 ]
  23. Woodford MR, Sager RA, Marris E, Dunn DM, Blanden AR, Murphy RL, Rensing N, Shapiro O, Panaretou B, Prodromou C, Loh SN, Gutmann DH, Bourboulia D, Bratslavsky G, Wong M, Mollapour M: Tumor suppressor Tsc1 is a new Hsp90 co-chaperone that facilitates folding of kinase and non-kinase clients. EMBO J. 2017 Dec 15;36(24):3650-3665. doi: 10.15252/embj.201796700. Epub 2017 Nov 10. [PubMed:29127155 ]
  24. Krzemien-Ojak L, Goral A, Joachimiak E, Filipek A, Fabczak H: Interaction of a Novel Chaperone PhLP2A With the Heat Shock Protein Hsp90. J Cell Biochem. 2017 Feb;118(2):420-429. doi: 10.1002/jcb.25669. Epub 2016 Oct 17. [PubMed:27496612 ]