Hmdb loader
Survey
Identification
HMDB Protein ID HMDBP14473
Secondary Accession Numbers None
Name Mothers against decapentaplegic homolog 3
Synonyms
  1. MAD homolog 3
  2. Mad3
  3. Mothers against DPP homolog 3
  4. hMAD-3
  5. JV15-2
  6. SMAD family member 3
  7. SMAD 3
  8. Smad3
  9. hSMAD3
Gene Name SMAD3
Protein Type Unknown
Biological Properties
General Function Not Available
Specific Function Receptor-regulated SMAD (R-SMAD) that is an intracellular signal transducer and transcriptional modulator activated by TGF-beta (transforming growth factor) and activin type 1 receptor kinases. Binds the TRE element in the promoter region of many genes that are regulated by TGF-beta and, on formation of the SMAD3/SMAD4 complex, activates transcription. Also can form a SMAD3/SMAD4/JUN/FOS complex at the AP-1/SMAD site to regulate TGF-beta-mediated transcription. Has an inhibitory effect on wound healing probably by modulating both growth and migration of primary keratinocytes and by altering the TGF-mediated chemotaxis of monocytes. This effect on wound healing appears to be hormone-sensitive. Regulator of chondrogenesis and osteogenesis and inhibits early healing of bone fractures. Positively regulates PDPK1 kinase activity by stimulating its dissociation from the 14-3-3 protein YWHAQ which acts as a negative regulator.
Pathways
  • Adherens junction
  • AGE-RAGE signaling pathway in diabetic complications
  • Apelin signaling pathway
  • Cell cycle
  • Cellular senescence
  • Chronic myeloid leukemia
  • Colorectal cancer
  • Diabetic cardiomyopathy
  • Endocytosis
  • FoxO signaling pathway
  • Gastric cancer
  • Hepatitis B
  • Hepatocellular carcinoma
  • Hippo signaling pathway
  • Human T-cell leukemia virus 1 infection
  • Inflammatory bowel disease
  • Pancreatic cancer
  • Signaling pathways regulating pluripotency of stem cells
  • TGF-beta signaling pathway
  • Th17 cell differentiation
  • Wnt signaling pathway
Reactions Not Available
GO Classification
Biological Process
activation of cysteine-type endopeptidase activity involved in apoptotic signaling pathway
activin receptor signaling pathway
embryonic foregut morphogenesis
cell-cell junction organization
embryonic pattern specification
immune system development
negative regulation of cardiac muscle hypertrophy in response to stress
positive regulation of canonical Wnt receptor signaling pathway
negative regulation of lung blood pressure
negative regulation of osteoblast proliferation
wound healing
negative regulation of wound healing
paraxial mesoderm morphogenesis
protein deubiquitination
positive regulation of extracellular matrix assembly
positive regulation of transforming growth factor beta3 production
primary miRNA processing
regulation of epithelial cell proliferation
positive regulation of bone mineralization
regulation of striated muscle tissue development
transdifferentiation
positive regulation of cell migration
activation of cysteine-type endopeptidase activity involved in apoptotic process
cell cycle arrest
negative regulation of apoptotic process
negative regulation of inflammatory response
negative regulation of fat cell differentiation
positive regulation of alkaline phosphatase activity
signal transduction involved in regulation of gene expression
positive regulation of protein import into nucleus
adrenal gland development
SMAD protein signal transduction
osteoblast development
protein stabilization
developmental growth
in utero embryonic development
BMP signaling pathway
anatomical structure morphogenesis
liver development
positive regulation of epithelial to mesenchymal transition
somitogenesis
positive regulation of chondrocyte differentiation
positive regulation of pri-miRNA transcription by RNA polymerase II
positive regulation of nitric oxide biosynthetic process
reduction of cytosolic calcium ion concentration
negative regulation of mitotic cell cycle
regulation of binding
regulation of transcription from RNA polymerase II promoter
positive regulation of sequence-specific DNA binding transcription factor activity
positive regulation of transcription, DNA-dependent
negative regulation of transcription from RNA polymerase II promoter
endoderm development
cellular response to cytokine stimulus
viral reproduction
immune response
positive regulation of transcription from RNA polymerase II promoter
mesoderm formation
cell differentiation
positive regulation of positive chemotaxis
heart looping
negative regulation of cell growth
embryonic cranial skeleton morphogenesis
pericardium development
thyroid gland development
negative regulation of osteoblast differentiation
negative regulation of transforming growth factor beta receptor signaling pathway
regulation of transforming growth factor beta receptor signaling pathway
regulation of transforming growth factor beta2 production
lens fiber cell differentiation
negative regulation of protein catabolic process
SMAD protein complex assembly
transforming growth factor beta receptor signaling pathway
nodal signaling pathway
positive regulation of interleukin-1 beta production
positive regulation of gene expression
cellular response to transforming growth factor beta stimulus
response to hypoxia
T cell activation
extrinsic apoptotic signaling pathway
regulation of immune response
ureteric bud development
positive regulation of stress fiber assembly
positive regulation of focal adhesion assembly
Cellular Component
cytosol
receptor complex
cytoplasm
plasma membrane
nucleus
nucleoplasm
chromatin
heteromeric SMAD protein complex
SMAD protein complex
transcription factor complex
nuclear inner membrane
Molecular Function
ubiquitin binding
protein kinase binding
collagen binding
sequence-specific DNA binding
sequence-specific DNA binding transcription factor activity
co-SMAD binding
phosphatase binding
R-SMAD binding
DNA-binding transcription activator activity, RNA polymerase II-specific
chromatin DNA binding
ubiquitin protein ligase binding
transcription factor binding
zinc ion binding
protein homodimerization activity
I-SMAD binding
transcription coactivator binding
beta-catenin binding
DNA-binding transcription factor activity, RNA polymerase II-specific
RNA polymerase II core promoter proximal region sequence-specific DNA binding
core promoter proximal region sequence-specific DNA binding
RNA polymerase II activating transcription factor binding
identical protein binding
transcription regulatory region sequence-specific DNA binding
bHLH transcription factor binding
DEAD/H-box RNA helicase binding
glucocorticoid receptor binding
mineralocorticoid receptor binding
transforming growth factor beta receptor binding
Cellular Location Not Available
Gene Properties
Chromosome Location Not Available
Locus Not Available
SNPs Not Available
Gene Sequence Not Available
Protein Properties
Number of Residues 425
Molecular Weight 48080.42
Theoretical pI 7.151
Pfam Domain Function
Signals Not Available
Transmembrane Regions Not Available
Protein Sequence Not Available
GenBank ID Protein Not Available
UniProtKB/Swiss-Prot ID P84022
UniProtKB/Swiss-Prot Entry Name SMAD3_HUMAN
PDB IDs
GenBank Gene ID Not Available
GeneCard ID Not Available
GenAtlas ID Not Available
HGNC ID Not Available
References
General References
  1. Ota T, Suzuki Y, Nishikawa T, Otsuki T, Sugiyama T, Irie R, Wakamatsu A, Hayashi K, Sato H, Nagai K, Kimura K, Makita H, Sekine M, Obayashi M, Nishi T, Shibahara T, Tanaka T, Ishii S, Yamamoto J, Saito K, Kawai Y, Isono Y, Nakamura Y, Nagahari K, Murakami K, Yasuda T, Iwayanagi T, Wagatsuma M, Shiratori A, Sudo H, Hosoiri T, Kaku Y, Kodaira H, Kondo H, Sugawara M, Takahashi M, Kanda K, Yokoi T, Furuya T, Kikkawa E, Omura Y, Abe K, Kamihara K, Katsuta N, Sato K, Tanikawa M, Yamazaki M, Ninomiya K, Ishibashi T, Yamashita H, Murakawa K, Fujimori K, Tanai H, Kimata M, Watanabe M, Hiraoka S, Chiba Y, Ishida S, Ono Y, Takiguchi S, Watanabe S, Yosida M, Hotuta T, Kusano J, Kanehori K, Takahashi-Fujii A, Hara H, Tanase TO, Nomura Y, Togiya S, Komai F, Hara R, Takeuchi K, Arita M, Imose N, Musashino K, Yuuki H, Oshima A, Sasaki N, Aotsuka S, Yoshikawa Y, Matsunawa H, Ichihara T, Shiohata N, Sano S, Moriya S, Momiyama H, Satoh N, Takami S, Terashima Y, Suzuki O, Nakagawa S, Senoh A, Mizoguchi H, Goto Y, Shimizu F, Wakebe H, Hishigaki H, Watanabe T, Sugiyama A, Takemoto M, Kawakami B, Yamazaki M, Watanabe K, Kumagai A, Itakura S, Fukuzumi Y, Fujimori Y, Komiyama M, Tashiro H, Tanigami A, Fujiwara T, Ono T, Yamada K, Fujii Y, Ozaki K, Hirao M, Ohmori Y, Kawabata A, Hikiji T, Kobatake N, Inagaki H, Ikema Y, Okamoto S, Okitani R, Kawakami T, Noguchi S, Itoh T, Shigeta K, Senba T, Matsumura K, Nakajima Y, Mizuno T, Morinaga M, Sasaki M, Togashi T, Oyama M, Hata H, Watanabe M, Komatsu T, Mizushima-Sugano J, Satoh T, Shirai Y, Takahashi Y, Nakagawa K, Okumura K, Nagase T, Nomura N, Kikuchi H, Masuho Y, Yamashita R, Nakai K, Yada T, Nakamura Y, Ohara O, Isogai T, Sugano S: Complete sequencing and characterization of 21,243 full-length human cDNAs. Nat Genet. 2004 Jan;36(1):40-5. Epub 2003 Dec 21. [PubMed:14702039 ]
  2. Gerhard DS, Wagner L, Feingold EA, Shenmen CM, Grouse LH, Schuler G, Klein SL, Old S, Rasooly R, Good P, Guyer M, Peck AM, Derge JG, Lipman D, Collins FS, Jang W, Sherry S, Feolo M, Misquitta L, Lee E, Rotmistrovsky K, Greenhut SF, Schaefer CF, Buetow K, Bonner TI, Haussler D, Kent J, Kiekhaus M, Furey T, Brent M, Prange C, Schreiber K, Shapiro N, Bhat NK, Hopkins RF, Hsie F, Driscoll T, Soares MB, Casavant TL, Scheetz TE, Brown-stein MJ, Usdin TB, Toshiyuki S, Carninci P, Piao Y, Dudekula DB, Ko MS, Kawakami K, Suzuki Y, Sugano S, Gruber CE, Smith MR, Simmons B, Moore T, Waterman R, Johnson SL, Ruan Y, Wei CL, Mathavan S, Gunaratne PH, Wu J, Garcia AM, Hulyk SW, Fuh E, Yuan Y, Sneed A, Kowis C, Hodgson A, Muzny DM, McPherson J, Gibbs RA, Fahey J, Helton E, Ketteman M, Madan A, Rodrigues S, Sanchez A, Whiting M, Madari A, Young AC, Wetherby KD, Granite SJ, Kwong PN, Brinkley CP, Pearson RL, Bouffard GG, Blakesly RW, Green ED, Dickson MC, Rodriguez AC, Grimwood J, Schmutz J, Myers RM, Butterfield YS, Griffith M, Griffith OL, Krzywinski MI, Liao N, Morin R, Palmquist D, Petrescu AS, Skalska U, Smailus DE, Stott JM, Schnerch A, Schein JE, Jones SJ, Holt RA, Baross A, Marra MA, Clifton S, Makowski KA, Bosak S, Malek J: The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC). Genome Res. 2004 Oct;14(10B):2121-7. [PubMed:15489334 ]
  3. Dephoure N, Zhou C, Villen J, Beausoleil SA, Bakalarski CE, Elledge SJ, Gygi SP: A quantitative atlas of mitotic phosphorylation. Proc Natl Acad Sci U S A. 2008 Aug 5;105(31):10762-7. doi: 10.1073/pnas.0805139105. Epub 2008 Jul 31. [PubMed:18669648 ]
  4. Gauci S, Helbig AO, Slijper M, Krijgsveld J, Heck AJ, Mohammed S: Lys-N and trypsin cover complementary parts of the phosphoproteome in a refined SCX-based approach. Anal Chem. 2009 Jun 1;81(11):4493-501. doi: 10.1021/ac9004309. [PubMed:19413330 ]
  5. Sjoblom T, Jones S, Wood LD, Parsons DW, Lin J, Barber TD, Mandelker D, Leary RJ, Ptak J, Silliman N, Szabo S, Buckhaults P, Farrell C, Meeh P, Markowitz SD, Willis J, Dawson D, Willson JK, Gazdar AF, Hartigan J, Wu L, Liu C, Parmigiani G, Park BH, Bachman KE, Papadopoulos N, Vogelstein B, Kinzler KW, Velculescu VE: The consensus coding sequences of human breast and colorectal cancers. Science. 2006 Oct 13;314(5797):268-74. Epub 2006 Sep 7. [PubMed:16959974 ]
  6. Zody MC, Garber M, Sharpe T, Young SK, Rowen L, O'Neill K, Whittaker CA, Kamal M, Chang JL, Cuomo CA, Dewar K, FitzGerald MG, Kodira CD, Madan A, Qin S, Yang X, Abbasi N, Abouelleil A, Arachchi HM, Baradarani L, Birditt B, Bloom S, Bloom T, Borowsky ML, Burke J, Butler J, Cook A, DeArellano K, DeCaprio D, Dorris L 3rd, Dors M, Eichler EE, Engels R, Fahey J, Fleetwood P, Friedman C, Gearin G, Hall JL, Hensley G, Johnson E, Jones C, Kamat A, Kaur A, Locke DP, Madan A, Munson G, Jaffe DB, Lui A, Macdonald P, Mauceli E, Naylor JW, Nesbitt R, Nicol R, O'Leary SB, Ratcliffe A, Rounsley S, She X, Sneddon KM, Stewart S, Sougnez C, Stone SM, Topham K, Vincent D, Wang S, Zimmer AR, Birren BW, Hood L, Lander ES, Nusbaum C: Analysis of the DNA sequence and duplication history of human chromosome 15. Nature. 2006 Mar 30;440(7084):671-5. [PubMed:16572171 ]
  7. Sun Y, Ding L, Zhang H, Han J, Yang X, Yan J, Zhu Y, Li J, Song H, Ye Q: Potentiation of Smad-mediated transcriptional activation by the RNA-binding protein RBPMS. Nucleic Acids Res. 2006;34(21):6314-26. Epub 2006 Nov 11. [PubMed:17099224 ]
  8. Riggins GJ, Thiagalingam S, Rozenblum E, Weinstein CL, Kern SE, Hamilton SR, Willson JK, Markowitz SD, Kinzler KW, Vogelstein B: Mad-related genes in the human. Nat Genet. 1996 Jul;13(3):347-9. [PubMed:8673135 ]
  9. Zhang Y, Feng X, We R, Derynck R: Receptor-associated Mad homologues synergize as effectors of the TGF-beta response. Nature. 1996 Sep 12;383(6596):168-72. [PubMed:8774881 ]
  10. Lin F, Morrison JM, Wu W, Worman HJ: MAN1, an integral protein of the inner nuclear membrane, binds Smad2 and Smad3 and antagonizes transforming growth factor-beta signaling. Hum Mol Genet. 2005 Feb 1;14(3):437-45. Epub 2004 Dec 15. [PubMed:15601644 ]
  11. Pan D, Estevez-Salmeron LD, Stroschein SL, Zhu X, He J, Zhou S, Luo K: The integral inner nuclear membrane protein MAN1 physically interacts with the R-Smad proteins to repress signaling by the transforming growth factor-{beta} superfamily of cytokines. J Biol Chem. 2005 Apr 22;280(16):15992-6001. Epub 2005 Jan 12. [PubMed:15647271 ]
  12. Arndt S, Poser I, Schubert T, Moser M, Bosserhoff AK: Cloning and functional characterization of a new Ski homolog, Fussel-18, specifically expressed in neuronal tissues. Lab Invest. 2005 Nov;85(11):1330-41. [PubMed:16200078 ]
  13. He W, Dorn DC, Erdjument-Bromage H, Tempst P, Moore MA, Massague J: Hematopoiesis controlled by distinct TIF1gamma and Smad4 branches of the TGFbeta pathway. Cell. 2006 Jun 2;125(5):929-41. [PubMed:16751102 ]
  14. Arndt S, Poser I, Moser M, Bosserhoff AK: Fussel-15, a novel Ski/Sno homolog protein, antagonizes BMP signaling. Mol Cell Neurosci. 2007 Apr;34(4):603-11. Epub 2007 Jan 11. [PubMed:17292623 ]
  15. Varelas X, Sakuma R, Samavarchi-Tehrani P, Peerani R, Rao BM, Dembowy J, Yaffe MB, Zandstra PW, Wrana JL: TAZ controls Smad nucleocytoplasmic shuttling and regulates human embryonic stem-cell self-renewal. Nat Cell Biol. 2008 Jul;10(7):837-48. doi: 10.1038/ncb1748. Epub 2008 Jun 22. [PubMed:18568018 ]
  16. Takahata M, Inoue Y, Tsuda H, Imoto I, Koinuma D, Hayashi M, Ichikura T, Yamori T, Nagasaki K, Yoshida M, Matsuoka M, Morishita K, Yuki K, Hanyu A, Miyazawa K, Inazawa J, Miyazono K, Imamura T: SKI and MEL1 cooperate to inhibit transforming growth factor-beta signal in gastric cancer cells. J Biol Chem. 2009 Jan 30;284(5):3334-44. doi: 10.1074/jbc.M808989200. Epub 2008 Dec 1. [PubMed:19049980 ]
  17. Arai T, Akiyama Y, Okabe S, Ando M, Endo M, Yuasa Y: Genomic structure of the human Smad3 gene and its infrequent alterations in colorectal cancers. Cancer Lett. 1998 Jan 9;122(1-2):157-63. [PubMed:9464505 ]
  18. Melhuish TA, Gallo CM, Wotton D: TGIF2 interacts with histone deacetylase 1 and represses transcription. J Biol Chem. 2001 Aug 24;276(34):32109-14. Epub 2001 Jun 26. [PubMed:11427533 ]
  19. Shi Y, Wang YF, Jayaraman L, Yang H, Massague J, Pavletich NP: Crystal structure of a Smad MH1 domain bound to DNA: insights on DNA binding in TGF-beta signaling. Cell. 1998 Sep 4;94(5):585-94. [PubMed:9741623 ]
  20. Chacko BM, Qin B, Correia JJ, Lam SS, de Caestecker MP, Lin K: The L3 loop and C-terminal phosphorylation jointly define Smad protein trimerization. Nat Struct Biol. 2001 Mar;8(3):248-53. [PubMed:11224571 ]
  21. Nitta E, Izutsu K, Yamaguchi Y, Imai Y, Ogawa S, Chiba S, Kurokawa M, Hirai H: Oligomerization of Evi-1 regulated by the PR domain contributes to recruitment of corepressor CtBP. Oncogene. 2005 Sep 8;24(40):6165-73. [PubMed:15897867 ]
  22. Kurisaki A, Kurisaki K, Kowanetz M, Sugino H, Yoneda Y, Heldin CH, Moustakas A: The mechanism of nuclear export of Smad3 involves exportin 4 and Ran. Mol Cell Biol. 2006 Feb;26(4):1318-32. [PubMed:16449645 ]
  23. Wu K, Yang Y, Wang C, Davoli MA, D'Amico M, Li A, Cveklova K, Kozmik Z, Lisanti MP, Russell RG, Cvekl A, Pestell RG: DACH1 inhibits transforming growth factor-beta signaling through binding Smad4. J Biol Chem. 2003 Dec 19;278(51):51673-84. Epub 2003 Oct 2. [PubMed:14525983 ]
  24. Van Damme P, Lasa M, Polevoda B, Gazquez C, Elosegui-Artola A, Kim DS, De Juan-Pardo E, Demeyer K, Hole K, Larrea E, Timmerman E, Prieto J, Arnesen T, Sherman F, Gevaert K, Aldabe R: N-terminal acetylome analyses and functional insights of the N-terminal acetyltransferase NatB. Proc Natl Acad Sci U S A. 2012 Jul 31;109(31):12449-54. doi: 10.1073/pnas.1210303109. Epub 2012 Jul 18. [PubMed:22814378 ]
  25. Zhou H, Di Palma S, Preisinger C, Peng M, Polat AN, Heck AJ, Mohammed S: Toward a comprehensive characterization of a human cancer cell phosphoproteome. J Proteome Res. 2013 Jan 4;12(1):260-71. doi: 10.1021/pr300630k. Epub 2012 Dec 18. [PubMed:23186163 ]
  26. Burkard TR, Planyavsky M, Kaupe I, Breitwieser FP, Burckstummer T, Bennett KL, Superti-Furga G, Colinge J: Initial characterization of the human central proteome. BMC Syst Biol. 2011 Jan 26;5:17. doi: 10.1186/1752-0509-5-17. [PubMed:21269460 ]
  27. Jiao K, Zhou Y, Hogan BL: Identification of mZnf8, a mouse Kruppel-like transcriptional repressor, as a novel nuclear interaction partner of Smad1. Mol Cell Biol. 2002 Nov;22(21):7633-44. doi: 10.1128/MCB.22.21.7633-7644.2002. [PubMed:12370310 ]
  28. Varelas X, Samavarchi-Tehrani P, Narimatsu M, Weiss A, Cockburn K, Larsen BG, Rossant J, Wrana JL: The Crumbs complex couples cell density sensing to Hippo-dependent control of the TGF-beta-SMAD pathway. Dev Cell. 2010 Dec 14;19(6):831-44. doi: 10.1016/j.devcel.2010.11.012. [PubMed:21145499 ]
  29. Kawabata M, Inoue H, Hanyu A, Imamura T, Miyazono K: Smad proteins exist as monomers in vivo and undergo homo- and hetero-oligomerization upon activation by serine/threonine kinase receptors. EMBO J. 1998 Jul 15;17(14):4056-65. doi: 10.1093/emboj/17.14.4056. [PubMed:9670020 ]
  30. Chen HB, Rud JG, Lin K, Xu L: Nuclear targeting of transforming growth factor-beta-activated Smad complexes. J Biol Chem. 2005 Jun 3;280(22):21329-36. doi: 10.1074/jbc.M500362200. Epub 2005 Mar 30. [PubMed:15799969 ]
  31. Li X, Thyssen G, Beliakoff J, Sun Z: The novel PIAS-like protein hZimp10 enhances Smad transcriptional activity. J Biol Chem. 2006 Aug 18;281(33):23748-56. doi: 10.1074/jbc.M508365200. Epub 2006 Jun 15. [PubMed:16777850 ]
  32. Feng Y, Wu H, Xu Y, Zhang Z, Liu T, Lin X, Feng XH: Zinc finger protein 451 is a novel Smad corepressor in transforming growth factor-beta signaling. J Biol Chem. 2014 Jan 24;289(4):2072-83. doi: 10.1074/jbc.M113.526905. Epub 2013 Dec 9. [PubMed:24324267 ]
  33. Chacko BM, Qin BY, Tiwari A, Shi G, Lam S, Hayward LJ, De Caestecker M, Lin K: Structural basis of heteromeric smad protein assembly in TGF-beta signaling. Mol Cell. 2004 Sep 10;15(5):813-23. doi: 10.1016/j.molcel.2004.07.016. [PubMed:15350224 ]
  34. Nakao A, Imamura T, Souchelnytskyi S, Kawabata M, Ishisaki A, Oeda E, Tamaki K, Hanai J, Heldin CH, Miyazono K, ten Dijke P: TGF-beta receptor-mediated signalling through Smad2, Smad3 and Smad4. EMBO J. 1997 Sep 1;16(17):5353-62. doi: 10.1093/emboj/16.17.5353. [PubMed:9311995 ]
  35. Tsukazaki T, Chiang TA, Davison AF, Attisano L, Wrana JL: SARA, a FYVE domain protein that recruits Smad2 to the TGFbeta receptor. Cell. 1998 Dec 11;95(6):779-91. doi: 10.1016/s0092-8674(00)81701-8. [PubMed:9865696 ]
  36. Shen X, Hu PP, Liberati NT, Datto MB, Frederick JP, Wang XF: TGF-beta-induced phosphorylation of Smad3 regulates its interaction with coactivator p300/CREB-binding protein. Mol Biol Cell. 1998 Dec;9(12):3309-19. doi: 10.1091/mbc.9.12.3309. [PubMed:9843571 ]
  37. Zhang Y, Feng XH, Derynck R: Smad3 and Smad4 cooperate with c-Jun/c-Fos to mediate TGF-beta-induced transcription. Nature. 1998 Aug 27;394(6696):909-13. doi: 10.1038/29814. [PubMed:9732876 ]
  38. Lebrun JJ, Takabe K, Chen Y, Vale W: Roles of pathway-specific and inhibitory Smads in activin receptor signaling. Mol Endocrinol. 1999 Jan;13(1):15-23. doi: 10.1210/mend.13.1.0218. [PubMed:9892009 ]
  39. Qing J, Zhang Y, Derynck R: Structural and functional characterization of the transforming growth factor-beta -induced Smad3/c-Jun transcriptional cooperativity. J Biol Chem. 2000 Dec 8;275(49):38802-12. doi: 10.1074/jbc.M004731200. [PubMed:10995748 ]
  40. Hocevar BA, Smine A, Xu XX, Howe PH: The adaptor molecule Disabled-2 links the transforming growth factor beta receptors to the Smad pathway. EMBO J. 2001 Jun 1;20(11):2789-801. doi: 10.1093/emboj/20.11.2789. [PubMed:11387212 ]
  41. Leong GM, Subramaniam N, Figueroa J, Flanagan JL, Hayman MJ, Eisman JA, Kouzmenko AP: Ski-interacting protein interacts with Smad proteins to augment transforming growth factor-beta-dependent transcription. J Biol Chem. 2001 May 25;276(21):18243-8. doi: 10.1074/jbc.M010815200. Epub 2001 Mar 6. [PubMed:11278756 ]
  42. Kaji H, Canaff L, Lebrun JJ, Goltzman D, Hendy GN: Inactivation of menin, a Smad3-interacting protein, blocks transforming growth factor type beta signaling. Proc Natl Acad Sci U S A. 2001 Mar 27;98(7):3837-42. doi: 10.1073/pnas.061358098. Epub 2001 Mar 13. [PubMed:11274402 ]
  43. Matsuura I, Denissova NG, Wang G, He D, Long J, Liu F: Cyclin-dependent kinases regulate the antiproliferative function of Smads. Nature. 2004 Jul 8;430(6996):226-31. doi: 10.1038/nature02650. [PubMed:15241418 ]
  44. Wang G, Long J, Matsuura I, He D, Liu F: The Smad3 linker region contains a transcriptional activation domain. Biochem J. 2005 Feb 15;386(Pt 1):29-34. doi: 10.1042/BJ20041820. [PubMed:15588252 ]
  45. Matsuura I, Wang G, He D, Liu F: Identification and characterization of ERK MAP kinase phosphorylation sites in Smad3. Biochemistry. 2005 Sep 20;44(37):12546-53. doi: 10.1021/bi050560g. [PubMed:16156666 ]
  46. Wang H, Song K, Sponseller TL, Danielpour D: Novel function of androgen receptor-associated protein 55/Hic-5 as a negative regulator of Smad3 signaling. J Biol Chem. 2005 Feb 18;280(7):5154-62. doi: 10.1074/jbc.M411575200. Epub 2004 Nov 23. [PubMed:15561701 ]
  47. Lin X, Duan X, Liang YY, Su Y, Wrighton KH, Long J, Hu M, Davis CM, Wang J, Brunicardi FC, Shi Y, Chen YG, Meng A, Feng XH: PPM1A functions as a Smad phosphatase to terminate TGFbeta signaling. Cell. 2006 Jun 2;125(5):915-28. doi: 10.1016/j.cell.2006.03.044. [PubMed:16751101 ]
  48. Inoue Y, Itoh Y, Abe K, Okamoto T, Daitoku H, Fukamizu A, Onozaki K, Hayashi H: Smad3 is acetylated by p300/CBP to regulate its transactivation activity. Oncogene. 2007 Jan 25;26(4):500-8. doi: 10.1038/sj.onc.1209826. Epub 2006 Jul 24. [PubMed:16862174 ]
  49. Zhao X, Nicholls JM, Chen YG: Severe acute respiratory syndrome-associated coronavirus nucleocapsid protein interacts with Smad3 and modulates transforming growth factor-beta signaling. J Biol Chem. 2008 Feb 8;283(6):3272-3280. doi: 10.1074/jbc.M708033200. Epub 2007 Nov 30. [PubMed:18055455 ]
  50. Guo X, Waddell DS, Wang W, Wang Z, Liberati NT, Yong S, Liu X, Wang XF: Ligand-dependent ubiquitination of Smad3 is regulated by casein kinase 1 gamma 2, an inhibitor of TGF-beta signaling. Oncogene. 2008 Dec 11;27(58):7235-47. doi: 10.1038/onc.2008.337. Epub 2008 Sep 15. [PubMed:18794808 ]
  51. Dai F, Lin X, Chang C, Feng XH: Nuclear export of Smad2 and Smad3 by RanBP3 facilitates termination of TGF-beta signaling. Dev Cell. 2009 Mar;16(3):345-57. doi: 10.1016/j.devcel.2009.01.022. [PubMed:19289081 ]
  52. Watanabe Y, Itoh S, Goto T, Ohnishi E, Inamitsu M, Itoh F, Satoh K, Wiercinska E, Yang W, Shi L, Tanaka A, Nakano N, Mommaas AM, Shibuya H, Ten Dijke P, Kato M: TMEPAI, a transmembrane TGF-beta-inducible protein, sequesters Smad proteins from active participation in TGF-beta signaling. Mol Cell. 2010 Jan 15;37(1):123-34. doi: 10.1016/j.molcel.2009.10.028. [PubMed:20129061 ]
  53. Nold MF, Nold-Petry CA, Zepp JA, Palmer BE, Bufler P, Dinarello CA: IL-37 is a fundamental inhibitor of innate immunity. Nat Immunol. 2010 Nov;11(11):1014-22. doi: 10.1038/ni.1944. Epub 2010 Oct 10. [PubMed:20935647 ]
  54. Inui M, Manfrin A, Mamidi A, Martello G, Morsut L, Soligo S, Enzo E, Moro S, Polo S, Dupont S, Cordenonsi M, Piccolo S: USP15 is a deubiquitylating enzyme for receptor-activated SMADs. Nat Cell Biol. 2011 Sep 25;13(11):1368-75. doi: 10.1038/ncb2346. [PubMed:21947082 ]
  55. Shang Y, Xu X, Duan X, Guo J, Wang Y, Ren F, He D, Chang Z: Hsp70 and Hsp90 oppositely regulate TGF-beta signaling through CHIP/Stub1. Biochem Biophys Res Commun. 2014 Mar 28;446(1):387-92. doi: 10.1016/j.bbrc.2014.02.124. Epub 2014 Mar 5. [PubMed:24613385 ]
  56. Nakano N, Maeyama K, Sakata N, Itoh F, Akatsu R, Nakata M, Katsu Y, Ikeno S, Togawa Y, Vo Nguyen TT, Watanabe Y, Kato M, Itoh S: C18 ORF1, a novel negative regulator of transforming growth factor-beta signaling. J Biol Chem. 2014 May 2;289(18):12680-92. doi: 10.1074/jbc.M114.558981. Epub 2014 Mar 13. [PubMed:24627487 ]
  57. Sakata N, Kaneko S, Ikeno S, Miura Y, Nakabayashi H, Dong XY, Dong JT, Tamaoki T, Nakano N, Itoh S: TGF- beta Signaling Cooperates with AT Motif-Binding Factor-1 for Repression of the alpha -Fetoprotein Promoter. J Signal Transduct. 2014;2014:970346. doi: 10.1155/2014/970346. Epub 2014 Jul 3. [PubMed:25105025 ]
  58. Dahl M, Maturi V, Lonn P, Papoutsoglou P, Zieba A, Vanlandewijck M, van der Heide LP, Watanabe Y, Soderberg O, Hottiger MO, Heldin CH, Moustakas A: Fine-tuning of Smad protein function by poly(ADP-ribose) polymerases and poly(ADP-ribose) glycohydrolase during transforming growth factor beta signaling. PLoS One. 2014 Aug 18;9(8):e103651. doi: 10.1371/journal.pone.0103651. eCollection 2014. [PubMed:25133494 ]
  59. Qin BY, Lam SS, Correia JJ, Lin K: Smad3 allostery links TGF-beta receptor kinase activation to transcriptional control. Genes Dev. 2002 Aug 1;16(15):1950-63. doi: 10.1101/gad.1002002. [PubMed:12154125 ]
  60. Chai J, Wu JW, Yan N, Massague J, Pavletich NP, Shi Y: Features of a Smad3 MH1-DNA complex. Roles of water and zinc in DNA binding. J Biol Chem. 2003 May 30;278(22):20327-31. doi: 10.1074/jbc.C300134200. Epub 2003 Apr 9. [PubMed:12686552 ]
  61. Regalado ES, Guo DC, Villamizar C, Avidan N, Gilchrist D, McGillivray B, Clarke L, Bernier F, Santos-Cortez RL, Leal SM, Bertoli-Avella AM, Shendure J, Rieder MJ, Nickerson DA, Milewicz DM: Exome sequencing identifies SMAD3 mutations as a cause of familial thoracic aortic aneurysm and dissection with intracranial and other arterial aneurysms. Circ Res. 2011 Sep 2;109(6):680-6. doi: 10.1161/CIRCRESAHA.111.248161. Epub 2011 Jul 21. [PubMed:21778426 ]
  62. van de Laar IM, Oldenburg RA, Pals G, Roos-Hesselink JW, de Graaf BM, Verhagen JM, Hoedemaekers YM, Willemsen R, Severijnen LA, Venselaar H, Vriend G, Pattynama PM, Collee M, Majoor-Krakauer D, Poldermans D, Frohn-Mulder IM, Micha D, Timmermans J, Hilhorst-Hofstee Y, Bierma-Zeinstra SM, Willems PJ, Kros JM, Oei EH, Oostra BA, Wessels MW, Bertoli-Avella AM: Mutations in SMAD3 cause a syndromic form of aortic aneurysms and dissections with early-onset osteoarthritis. Nat Genet. 2011 Feb;43(2):121-6. doi: 10.1038/ng.744. Epub 2011 Jan 9. [PubMed:21217753 ]