You are using an unsupported browser. Please upgrade your browser to a newer version to get the best experience on Human Metabolome Database.
Record Information
Version4.0
StatusExpected but not Quantified
Creation Date2005-11-16 15:48:42 UTC
Update Date2019-01-11 19:14:49 UTC
HMDB IDHMDB0000614
Secondary Accession Numbers
  • HMDB00614
Metabolite Identification
Common NamePS(16:0/16:0)
DescriptionPS(16:0/16:0) is a phosphatidylserine (PS or GPSer). It is a glycerophospholipid in which a phosphorylserine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoserines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PS(16:0/16:0), in particular, consists of two chain of palmitic acid at the C-1 and C-2 positions. Phosphatidylserine or 1,2-diacyl-sn-glycero-3-phospho-L-serine is distributed widely among animals, plants and microorganisms. It is usually less than 10% of the total phospholipids, the greatest concentration being in myelin from brain tissue. However, it may comprise 10 to 20 mol% of the total phospholipid in the plasma membrane and endoplasmic reticulum of the cell. Phosphatidylserine is an acidic (anionic) phospholipid with three ionizable groups, i.e. the phosphate moiety, the amino group and the carboxyl function. As with other acidic lipids, it exists in nature in salt form, but it has a high propensity to chelate to calcium via the charged oxygen atoms of both the carboxyl and phosphate moieties, modifying the conformation of the polar head group. This interaction may be of considerable relevance to the biological function of phosphatidylserine, especially during bone formation for example. As phosphatidylserine is located entirely on the inner monolayer surface of the plasma membrane (and of other cellular membranes) and it is the most abundant anionic phospholipids. Therefore phosphatidylseriine may make the largest contribution to interfacial effects in membranes involving non-specific electrostatic interactions. This normal distribution is disturbed during platelet activation and cellular apoptosis. In human plasma, 1-stearoyl-2-oleoyl and 1-stearoyl-2-arachidonoyl species predominate, but in brain (especially grey matter), retina and many other tissues 1-stearoyl-2-docosahexaenoyl species are very abundant. Indeed, the ratio of n-3 to n-6 fatty acids in brain phosphatidylserine is very much higher than in most other lipids.While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Phosphatidylserines typically carry a net charge of -1 at physiological pH. They mostly have palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PS biosynthesis involves an exchange reaction of serine for ethanolamine in PE.
Structure
Data?1547234089
SynonymsNot Available
Chemical FormulaC38H74NO10P
Average Molecular Weight735.981
Monoisotopic Molecular Weight735.505034585
IUPAC NameNot Available
Traditional NameNot Available
CAS Registry Number3036-82-6
SMILESNot Available
InChI Identifier
InChI=1S/C38H74NO10P/c1-3-5-7-9-11-13-15-17-19-21-23-25-27-29-36(40)46-31-34(32-47-50(44,45)48-33-35(39)38(42)43)49-37(41)30-28-26-24-22-20-18-16-14-12-10-8-6-4-2/h34-35H,3-33,39H2,1-2H3,(H,42,43)(H,44,45)/t34-,35+/m1/s1
InChI KeyKLFKZIQAIPDJCW-GPOMZPHUSA-N
Chemical Taxonomy
ClassificationNot classified
Ontology
Physiological effect

Organoleptic effect:

Disposition

Route of exposure:

Source:

Biological location:

Process

Naturally occurring process:

Role

Industrial application:

Biological role:

Physical Properties
StateSolid
Experimental Properties
PropertyValueReference
Melting PointNot AvailableNot Available
Boiling PointNot AvailableNot Available
Water SolubilityNot AvailableNot Available
LogPNot AvailableNot Available
Predicted PropertiesNot Available
Spectra
Spectrum TypeDescriptionSplash KeyView
Biological Properties
Cellular Locations
  • Extracellular
  • Membrane
Biospecimen LocationsNot Available
Tissue LocationsNot Available
Pathways
Normal Concentrations
Not Available
Abnormal Concentrations
Not Available
Associated Disorders and Diseases
Disease ReferencesNone
Associated OMIM IDsNone
External LinksNot Available
References
Synthesis ReferenceHermetter, A.; Paltauf, F.; Hauser, H. Synthesis of diacyl and alkylacyl glycerophosphoserines. Chemistry and Physics of Lipids (1982), 30(1), 35-45.
Material Safety Data Sheet (MSDS)Not Available
General References
  1. Thompson JA, Miles BS, Fennessey PV: Urinary organic acids quantitated by age groups in a healthy pediatric population. Clin Chem. 1977 Sep;23(9):1734-8. [PubMed:890917 ]
  2. Chen S: Partial characterization of the molecular species of phosphatidylserine from human plasma by high-performance liquid chromatography and fast atom bombardment mass spectrometry. J Chromatogr B Biomed Appl. 1994 Nov 4;661(1):1-5. [PubMed:7866537 ]
  3. Gao F, Tian X, Wen D, Liao J, Wang T, Liu H: Analysis of phospholipid species in rat peritoneal surface layer by liquid chromatography/electrospray ionization ion-trap mass spectrometry. Biochim Biophys Acta. 2006 Jul;1761(7):667-76. Epub 2006 Apr 24. [PubMed:16714143 ]

Only showing the first 10 proteins. There are 41 proteins in total.

Enzymes

General function:
Involved in phospholipase A2 activity
Specific function:
PA2 catalyzes the calcium-dependent hydrolysis of the 2-acyl groups in 3-sn-phosphoglycerides. Has a powerful potency for releasing arachidonic acid from cell membrane phospholipids. Prefers phosphatidylethanolamine and phosphatidylcholine liposomes to those of phosphatidylserine.
Gene Name:
PLA2G10
Uniprot ID:
O15496
Molecular weight:
18153.04
General function:
Involved in diacylglycerol kinase activity
Specific function:
Reverses the normal flow of glycerolipid biosynthesis by phosphorylating diacylglycerol back to phosphatidic acid
Gene Name:
DGKG
Uniprot ID:
P49619
Molecular weight:
89095.3
General function:
Involved in diacylglycerol kinase activity
Specific function:
Upon cell stimulation converts the second messenger diacylglycerol into phosphatidate, initiating the resynthesis of phosphatidylinositols and attenuating protein kinase C activity
Gene Name:
DGKA
Uniprot ID:
P23743
Molecular weight:
82629.5
General function:
Involved in diacylglycerol kinase activity
Specific function:
Isoform 2 may be involved in cell growth and tumorigenesis. Involved in clathrin-dependent endocytosis
Gene Name:
DGKD
Uniprot ID:
Q16760
Molecular weight:
134524.2
General function:
Involved in diacylglycerol kinase activity
Specific function:
Exhibits high phosphorylation activity for long-chain diacylglycerols
Gene Name:
DGKB
Uniprot ID:
Q9Y6T7
Molecular weight:
90594.7
General function:
Involved in protein serine/threonine kinase activity
Specific function:
PKC is activated by diacylglycerol which in turn phosphorylates a range of cellular proteins. PKC also serves as the receptor for phorbol esters, a class of tumor promoters
Gene Name:
PRKCA
Uniprot ID:
P17252
Molecular weight:
76763.5
General function:
Involved in ATP binding
Specific function:
May play a role in the transport of aminophospholipids from the outer to the inner leaflet of various membranes and the maintenance of asymmetric distribution of phospholipids, mainly in secretory vesicles
Gene Name:
ATP8A1
Uniprot ID:
Q9Y2Q0
Molecular weight:
131368.2
General function:
Involved in calcium ion binding
Specific function:
May play a role in the antiviral response of interferon (IFN) by amplifying and enhancing the IFN response through increased expression of select subset of potent antiviral genes. May contribute to cytokine-regulated cell proliferation and differentiation
Gene Name:
PLSCR1
Uniprot ID:
O15162
Molecular weight:
35048.8
References
  1. Kurz M, Brachvogel V, Matter H, Stengelin S, Thuring H, Kramer W: Insights into the bile acid transportation system: the human ileal lipid-binding protein-cholyltaurine complex and its comparison with homologous structures. Proteins. 2003 Feb 1;50(2):312-28. [PubMed:12486725 ]
General function:
Involved in phosphatidylserine biosynthetic process
Specific function:
Catalyzes a base-exchange reaction in which the polar head group of phosphatidylethanolamine (PE) or phosphatidylcholine (PC) is replaced by L-serine. In membranes, PTDSS1 catalyzes mainly the conversion of phosphatidylcholine. Also converts, in vitro and to a lesser extent, phosphatidylethanolamine.
Gene Name:
PTDSS1
Uniprot ID:
P48651
Molecular weight:
55527.18
References
  1. Kurz M, Brachvogel V, Matter H, Stengelin S, Thuring H, Kramer W: Insights into the bile acid transportation system: the human ileal lipid-binding protein-cholyltaurine complex and its comparison with homologous structures. Proteins. 2003 Feb 1;50(2):312-28. [PubMed:12486725 ]
General function:
Involved in cell adhesion
Specific function:
Receptor for different ligands such as phospholipids, cholesterol ester, lipoproteins, phosphatidylserine and apoptotic cells. Probable receptor for HDL, located in particular region of the plasma membrane, called caveolae. Facilitates the flux of free and esterified cholesterol between the cell surface and extracellular donors and acceptors, such as HDL and to a lesser extent, apoB-containing lipoproteins and modified lipoproteins. Probably involved in the phagocytosis of apoptotic cells, via its phosphatidylserine binding activity. Receptor for hepatitis C virus glycoprotein E2. Binding between SCARB1 and E2 was found to be independent of the genotype of the viral isolate. Plays an important role in the uptake of HDL cholesteryl ester
Gene Name:
SCARB1
Uniprot ID:
Q8WTV0
Molecular weight:
60877.4

Only showing the first 10 proteins. There are 41 proteins in total.