You are using an unsupported browser. Please upgrade your browser to a newer version to get the best experience on Human Metabolome Database.
Record Information
Version3.6
Creation Date2005-11-16 15:48:42 UTC
Update Date2016-02-11 01:03:09 UTC
HMDB IDHMDB00648
Secondary Accession NumbersNone
Metabolite Identification
Common NameGalactosylsphingosine
DescriptionGalactosylsphingosine is an intermediate in the biosynthesis of cerebrosides. It is formed by reaction of sphingosine with UDP-galactose and then itself reacts with fatty acid-Coenzyme A to form the cerebroside.
Structure
Thumb
Synonyms
ValueSource
(e)-DL-erythro-b-D-2-amino-3-Hydroxy-4-octadecenyl galactopyranosideHMDB
(e)-DL-erythro-beta-delta-2-amino-3-Hydroxy-4-octadecenyl galactopyranosideHMDB
2-amino-3-Hydroxy-4-octadecenyl galactopyranosideHMDB
erythro-PsychosineHMDB
PsychosineHMDB
Sphingosine galactosideHMDB
[R-[R*,s*-(e)]]-2-amino-3-hydroxy-4-octadecenyl b-D-galactopyranosideHMDB
[R-[R*,s*-(e)]]-2-amino-3-hydroxy-4-octadecenyl b-delta-galactopyranosideHMDB
Chemical FormulaC24H47NO7
Average Molecular Weight461.6325
Monoisotopic Molecular Weight461.335252863
IUPAC Name(3R,4S,5R,6R)-2-{[(4E)-2-amino-3-hydroxyoctadec-4-en-1-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol
Traditional Name(3R,4S,5R,6R)-2-{[(4E)-2-amino-3-hydroxyoctadec-4-en-1-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol
CAS Registry Number2238-90-6
SMILES
CCCCCCCCCCCCC\C=C\C(O)C(N)COC1O[C@H](CO)[C@H](O)[C@H](O)[C@H]1O
InChI Identifier
InChI=1S/C24H47NO7/c1-2-3-4-5-6-7-8-9-10-11-12-13-14-15-19(27)18(25)17-31-24-23(30)22(29)21(28)20(16-26)32-24/h14-15,18-24,26-30H,2-13,16-17,25H2,1H3/b15-14+/t18?,19?,20-,21+,22+,23-,24?/m1/s1
InChI KeyInChIKey=HHJTWTPUPVQKNA-DWSXXLTBSA-N
Chemical Taxonomy
DescriptionThis compound belongs to the class of organic compounds known as glycosphingolipids. These are sphingolipids containing a saccharide moiety glycosidically attached to the sphingoid base. Although saccharide moieties are mostly O-glycosidically linked to the ceramide moiety, other sphingolipids with glycosidic bonds of other types (e.g. S-,C-, or N-type) has been reported.
KingdomOrganic compounds
Super ClassLipids and lipid-like molecules
ClassSphingolipids
Sub ClassGlycosphingolipids
Direct ParentGlycosphingolipids
Alternative Parents
Substituents
  • Simple glycosphingolipid
  • Glycosphingolipid
  • Fatty acyl glycoside of mono- or disaccharide
  • Fatty acyl glycoside
  • Alkyl glycoside
  • O-glycosyl compound
  • Glycosyl compound
  • Fatty acyl
  • Oxane
  • Monosaccharide
  • Secondary alcohol
  • Polyol
  • 1,2-diol
  • Oxacycle
  • Organoheterocyclic compound
  • Acetal
  • Hydrocarbon derivative
  • Primary amine
  • Primary alcohol
  • Organooxygen compound
  • Organonitrogen compound
  • Primary aliphatic amine
  • Amine
  • Alcohol
  • Aliphatic heteromonocyclic compound
Molecular FrameworkAliphatic heteromonocyclic compounds
External DescriptorsNot Available
Ontology
StatusExpected but not Quantified
Origin
  • Endogenous
  • Food
Biofunction
  • Cell signaling
  • Fuel and energy storage
  • Fuel or energy source
  • Membrane integrity/stability
Application
  • Nutrients
  • Stabilizers
  • Surfactants and Emulsifiers
Cellular locations
  • Extracellular
  • Membrane (predicted from logP)
Physical Properties
StateSolid
Experimental Properties
PropertyValueReference
Melting PointNot AvailableNot Available
Boiling PointNot AvailableNot Available
Water SolubilityNot AvailableNot Available
LogPNot AvailableNot Available
Predicted Properties
PropertyValueSource
Water Solubility0.09 mg/mLALOGPS
logP3.16ALOGPS
logP2.8ChemAxon
logS-3.7ALOGPS
pKa (Strongest Acidic)12.21ChemAxon
pKa (Strongest Basic)9.12ChemAxon
Physiological Charge1ChemAxon
Hydrogen Acceptor Count8ChemAxon
Hydrogen Donor Count6ChemAxon
Polar Surface Area145.63 Å2ChemAxon
Rotatable Bond Count18ChemAxon
Refractivity124.31 m3·mol-1ChemAxon
Polarizability54.82 Å3ChemAxon
Number of Rings1ChemAxon
Bioavailability0ChemAxon
Rule of FiveYesChemAxon
Ghose FilterYesChemAxon
Veber's RuleYesChemAxon
MDDR-like RuleYesChemAxon
Spectra
SpectraNot Available
Biological Properties
Cellular Locations
  • Extracellular
  • Membrane (predicted from logP)
Biofluid LocationsNot Available
Tissue Location
  • Brain
  • Fibroblasts
  • Myelin
  • Nervous Tissues
PathwaysNot Available
Normal Concentrations
Not Available
Abnormal Concentrations
Not Available
Associated Disorders and Diseases
Disease ReferencesNone
Associated OMIM IDsNone
DrugBank IDNot Available
DrugBank Metabolite IDNot Available
Phenol Explorer Compound IDNot Available
Phenol Explorer Metabolite IDNot Available
FoodDB IDFDB022161
KNApSAcK IDNot Available
Chemspider ID17215986
KEGG Compound IDC01747
BioCyc IDNot Available
BiGG IDNot Available
Wikipedia LinkNot Available
NuGOwiki LinkHMDB00648
Metagene LinkHMDB00648
METLIN ID5620
PubChem Compound22833541
PDB IDNot Available
ChEBI ID16874
References
Synthesis ReferenceShapiro, David; Rachaman, Eliezer S.; Sheradsky, Tuvia. Synthetic studies on sphingolipids. X. Synthesis of psychosine. Journal of the American Chemical Society (1964), 86(20), 4472-6.
Material Safety Data Sheet (MSDS)Not Available
General References
  1. Shinoda H, Kobayashi T, Katayama M, Goto I, Nagara H: Accumulation of galactosylsphingosine (psychosine) in the twitcher mouse: determination by HPLC. J Neurochem. 1987 Jul;49(1):92-9. [3585345 ]
  2. Yoshimura T, Kobayashi T, Mitsuo K, Goto I: Decreased fatty acylation of myelin proteolipid protein in the twitcher mouse. J Neurochem. 1989 Mar;52(3):836-41. [2465381 ]
  3. Igisu H, Suzuki K: Progressive accumulation of toxic metabolite in a genetic leukodystrophy. Science. 1984 May 18;224(4650):753-5. [6719111 ]
  4. Chiba M, Tsuchihashi K, Suetake K, Ibayashi Y, Gasa S, Hashi K: Photoaffinity labeling of lipoproteins in human cerebrospinal fluid with a heterobifunctional derivative of galactosylsphingosine. Biochem Mol Biol Int. 1994 Apr;32(5):961-71. [8069245 ]
  5. Kobayashi T, Goto I, Yamanaka T, Suzuki Y, Nakano T, Suzuki K: Infantile and fetal globoid cell leukodystrophy: analysis of galactosylceramide and galactosylsphingosine. Ann Neurol. 1988 Oct;24(4):517-22. [3239954 ]
  6. Kobayashi T, Shinoda H, Goto I, Yamanaka T, Suzuki Y: Globoid cell leukodystrophy is a generalized galactosylsphingosine (psychosine) storage disease. Biochem Biophys Res Commun. 1987 Apr 14;144(1):41-6. [3579916 ]
  7. Shen JS, Watabe K, Meng XL, Ida H, Ohashi T, Eto Y: Establishment and characterization of spontaneously immortalized Schwann cells from murine model of globoid cell leukodystrophy (twitcher). J Neurosci Res. 2002 Jun 1;68(5):588-94. [12111848 ]
  8. Harzer K, Knoblich R, Rolfs A, Bauer P, Eggers J: Residual galactosylsphingosine (psychosine) beta-galactosidase activities and associated GALC mutations in late and very late onset Krabbe disease. Clin Chim Acta. 2002 Mar;317(1-2):77-84. [11814461 ]

Enzymes

General function:
Involved in galactosylceramidase activity
Specific function:
Hydrolyzes the galactose ester bonds of galactosylceramide, galactosylsphingosine, lactosylceramide, and monogalactosyldiglyceride. Enzyme with very low activity responsible for the lysosomal catabolism of galactosylceramide, a major lipid in myelin, kidney and epithelial cells of small intestine and colon.
Gene Name:
GALC
Uniprot ID:
P54803
Molecular weight:
77062.86
General function:
Involved in galactosylceramide sulfotransferase activity
Specific function:
Catalyzes the sulfation of membrane glycolipids. Seems to prefer beta-glycosides at the non-reducing termini of sugar chains attached to a lipid moiety. Catalyzes the synthesis of galactosylceramide sulfate (sulfatide), a major lipid component of the myelin sheath and of monogalactosylalkylacylglycerol sulfate (seminolipid), present in spermatocytes (By similarity). Also acts on lactosylceramide, galactosyl 1-alkyl-2-sn-glycerol and galactosyl diacylglycerol (in vitro).
Gene Name:
GAL3ST1
Uniprot ID:
Q99999
Molecular weight:
48763.63
General function:
Involved in transferase activity, transferring hexosyl groups
Specific function:
Catalyzes the formation of some glycolipid via the addition of N-acetylgalactosamine (GalNAc) in alpha-1,3-linkage to some substrate. Glycolipids probably serve for adherence of some pathogens
Gene Name:
GBGT1
Uniprot ID:
Q8N5D6
Molecular weight:
40126.9
General function:
Involved in N-acetylglucosaminylphosphatidylinositol de
Specific function:
Involved in the second step of GPI biosynthesis. De-N-acetylation of N-acetylglucosaminyl-phosphatidylinositol.
Gene Name:
PIGL
Uniprot ID:
Q9Y2B2
Molecular weight:
28530.965
General function:
Involved in galactosyltransferase activity
Specific function:
Necessary for the biosynthesis of the Pk antigen of blood histogroup P. Catalyzes the transfer of galactose to lactosylceramide and galactosylceramide. Necessary for the synthesis of the receptor for bacterial verotoxins.
Gene Name:
A4GALT
Uniprot ID:
Q9NPC4
Molecular weight:
40498.78
General function:
Involved in phosphatidylinositol N-acetylglucosaminyltransferase activity
Specific function:
Part of the complex catalyzing the transfer of N-acetylglucosamine from UDP-N-acetylglucosamine to phosphatidylinositol, the first step of GPI biosynthesis.
Gene Name:
PIGQ
Uniprot ID:
Q9BRB3
Molecular weight:
65343.25
General function:
Involved in biosynthetic process
Specific function:
Necessary for the synthesis of N-acetylglucosaminyl-phosphatidylinositol, the very early intermediate in GPI-anchor biosynthesis.
Gene Name:
PIGA
Uniprot ID:
P37287
Molecular weight:
54126.065
General function:
Involved in phosphatidylinositol N-acetylglucosaminyltr
Specific function:
Part of the complex catalyzing the transfer of N-acetylglucosamine from UDP-N-acetylglucosamine to phosphatidylinositol, the first step of GPI biosynthesis.
Gene Name:
PIGH
Uniprot ID:
Q14442
Molecular weight:
21080.415
General function:
Involved in phosphatidylinositol N-acetylglucosaminyltr
Specific function:
Part of the complex catalyzing the transfer of N-acetylglucosamine from UDP-N-acetylglucosamine to phosphatidylinositol, the first step of GPI biosynthesis.
Gene Name:
PIGP
Uniprot ID:
P57054
Molecular weight:
18089.055
General function:
Involved in phosphatidylinositol N-acetylglucosaminyltransferase activity
Specific function:
Part of the complex catalyzing the transfer of N-acetylglucosamine from UDP-N-acetylglucosamine to phosphatidylinositol, the first step of GPI biosynthesis.
Gene Name:
PIGC
Uniprot ID:
Q92535
Molecular weight:
33582.18
General function:
Involved in sphingolipid activator protein activity
Specific function:
Binds gangliosides and stimulates ganglioside GM2 degradation. It stimulates only the breakdown of ganglioside GM2 and glycolipid GA2 by beta-hexosaminidase A. It extracts single GM2 molecules from membranes and presents them in soluble form to beta-hexosaminidase A for cleavage of N-acetyl-D-galactosamine and conversion to GM3
Gene Name:
GM2A
Uniprot ID:
P17900
Molecular weight:
20838.1
General function:
Involved in immune response
Specific function:
T-cell surface glycoprotein CD1e, soluble is required for the presentation of glycolipid antigens on the cell surface. The membrane-associated form is not active
Gene Name:
CD1E
Uniprot ID:
P15812
Molecular weight:
43626.1
General function:
Involved in cholesterol binding
Specific function:
May be involved in the regulation of the lipid composition of sperm membranes during the maturation in the epididymis
Gene Name:
NPC2
Uniprot ID:
P61916
Molecular weight:
16570.1
General function:
Involved in immune response
Specific function:
Antigen-presenting protein that binds self and non-self glycolipids and presents them to T-cell receptors on natural killer T-cells
Gene Name:
CD1D
Uniprot ID:
P15813
Molecular weight:
37717.0
General function:
Involved in transferase activity, transferring hexosyl groups
Specific function:
Mannosyltransferase involved in glycosylphosphatidylinositol-anchor biosynthesis. Transfers the first alpha-1,4-mannose to GlcN-acyl-PI during GPI precursor assembly
Gene Name:
PIGM
Uniprot ID:
Q9H3S5
Molecular weight:
49459.2
General function:
Involved in transferase activity, transferring acyl groups
Specific function:
Probable acetyltransferase, which acetylates the inositol ring of phosphatidylinositol during biosynthesis of GPI-anchor. Acetylation during GPI-anchor biosynthesis is not essential for the subsequent mannosylation and is usually removed soon after the attachment of GPIs to proteins (By similarity).
Gene Name:
PIGW
Uniprot ID:
Q7Z7B1
Molecular weight:
Not Available
General function:
Involved in GPI anchor biosynthetic process
Specific function:
Essential component of glycosylphosphatidylinositol- mannosyltransferase 1 which transfers the first of the 4 mannoses in the GPI-anchor precursors during GPI-anchor biosynthesis. Probably acts by stabilizing the mannosyltransferase PIGM
Gene Name:
PIGX
Uniprot ID:
Q8TBF5
Molecular weight:
28788.1
General function:
Involved in transferase activity, transferring glycosyl groups
Specific function:
Mannosyltransferase involved in glycosylphosphatidylinositol-anchor biosynthesis. Transfers a fourth mannose to some trimannosyl-GPIs during GPI precursor assembly. The presence of a fourth mannose in GPI is facultative and only scarcely detected, suggesting that it only exists in some tissues
Gene Name:
PIGZ
Uniprot ID:
Q86VD9
Molecular weight:
63472.6
General function:
Involved in galactosyltransferase activity
Specific function:
Beta-1,3-N-acetylglucosaminyltransferase that plays a key role in the synthesis of lacto- or neolacto-series carbohydrate chains on glycolipids, notably by participating in biosynthesis of HNK-1 and Lewis X carbohydrate structures. Has strong activity toward lactosylceramide (LacCer) and neolactotetraosylceramide (nLc(4)Cer; paragloboside), resulting in the synthesis of Lc(3)Cer and neolactopentaosylceramide (nLc(5)Cer), respectively. Probably plays a central role in regulating neolacto-series glycolipid synthesis during embryonic development.
Gene Name:
B3GNT5
Uniprot ID:
Q9BYG0
Molecular weight:
44052.295
General function:
Involved in galactosyltransferase activity
Specific function:
Catalyzes the transfer of Gal to GlcNAc-based acceptors with a preference for the core3 O-linked glycan GlcNAc(beta1,3)GalNAc structure. Can use glycolipid LC3Cer as an efficient acceptor
Gene Name:
B3GALT5
Uniprot ID:
Q9Y2C3
Molecular weight:
36188.9
General function:
Involved in transferase activity, transferring glycosyl groups
Specific function:
Required for the biosynthesis of glycosphingolipids.
Gene Name:
B4GALT6
Uniprot ID:
Q9UBX8
Molecular weight:
44913.315
General function:
Involved in transferase activity, transferring glycosyl groups
Specific function:
Mannosyltransferase involved in glycosylphosphatidylinositol-anchor biosynthesis. Transfers the third alpha-1,2-mannose to Man2-GlcN-acyl-PI during GPI precursor assembly
Gene Name:
PIGB
Uniprot ID:
Q92521
Molecular weight:
65055.9
General function:
Involved in GPI anchor biosynthetic process
Specific function:
Involved in GPI-anchor biosynthesis through the transfer of ethanolamine phosphate to the third mannose of GPI
Gene Name:
PIGF
Uniprot ID:
Q07326
Molecular weight:
24889.3
General function:
Involved in catalytic activity
Specific function:
Ethanolamine phosphate transferase involved in glycosylphosphatidylinositol-anchor biosynthesis. Transfers ethanolamine phosphate to the GPI second mannose
Gene Name:
PIGG
Uniprot ID:
Q5H8A4
Molecular weight:
108171.7
General function:
Involved in catalytic activity
Specific function:
Ethanolamine phosphate transferase involved in glycosylphosphatidylinositol-anchor biosynthesis. Transfers ethanolamine phosphate to the first alpha-1,4-linked mannose of the glycosylphosphatidylinositol precursor of GPI-anchor
Gene Name:
PIGN
Uniprot ID:
O95427
Molecular weight:
105809.2
General function:
Involved in catalytic activity
Specific function:
Ethanolamine phosphate transferase involved in glycosylphosphatidylinositol-anchor biosynthesis. Transfers ethanolamine phosphate to the GPI third mannose which links the GPI-anchor to the C-terminus of the proteins by an amide bond
Gene Name:
PIGO
Uniprot ID:
Q8TEQ8
Molecular weight:
118697.6
General function:
Involved in protein binding
Specific function:
Component of the GPI transamidase complex. Essential for transfer of GPI to proteins, particularly for formation of carbonyl intermediates
Gene Name:
PIGS
Uniprot ID:
Q96S52
Molecular weight:
61655.5
General function:
Involved in protein binding
Specific function:
Component of the GPI transamidase complex. Essential for transfer of GPI to proteins, particularly for formation of carbonyl intermediates
Gene Name:
PIGT
Uniprot ID:
Q969N2
Molecular weight:
65699.0
General function:
Involved in GPI anchor biosynthetic process
Specific function:
Component of the GPI transamidase complex. May be involved in the recognition of either the GPI attachment signal or the lipid portion of GPI
Gene Name:
PIGU
Uniprot ID:
Q9H490
Molecular weight:
50051.2
General function:
Involved in transferase activity, transferring hexosyl groups
Specific function:
Alpha-1,6-mannosyltransferase involved in glycosylphosphatidylinositol-anchor biosynthesis. Transfers the second mannose to the glycosylphosphatidylinositol during GPI precursor assembly
Gene Name:
PIGV
Uniprot ID:
Q9NUD9
Molecular weight:
55712.1
General function:
Involved in GPI anchor biosynthetic process
Specific function:
Component of the GPI-GlcNAc transferase (GPI-GnT) complex in the endoplasmic reticulum, a complex that catalyzes transfer of GlcNAc from UDP-GlcNAc to an acceptor phosphatidylinositol, the first step in the production of GPI- anchors for cell surface proteins. May act by regulating the catalytic subunit PIGA
Gene Name:
PIGY
Uniprot ID:
Q3MUY2
Molecular weight:
8057.5
General function:
Involved in glycolipid transporter activity
Specific function:
Involved in TGN-to-plasma membrane transport and in the formation of post-Golgi constitutive carriers. May play a role in ensuring the coordination of the budding and the fission reactions
Gene Name:
PLEKHA8
Uniprot ID:
Q96JA3
Molecular weight:
58306.0
General function:
Involved in catalytic activity
Specific function:
Non-lysosomal glucosylceramidase that catalyzes the conversion of glucosylceramide to free glucose and ceramide. Involved in sphingomyelin generation and prevention of glycolipid accumulation. May also catalyze the hydrolysis of bile acid 3-O-glucosides, however, the relevance of such activity is unclear in vivo.
Gene Name:
GBA2
Uniprot ID:
Q9HCG7
Molecular weight:
104648.13
General function:
Involved in cysteine-type endopeptidase activity
Specific function:
Mediates GPI anchoring in the endoplasmic reticulum, by replacing a protein's C-terminal GPI attachment signal peptide with a pre-assembled GPI. During this transamidation reaction, the GPI transamidase forms a carbonyl intermediate with the substrate protein
Gene Name:
PIGK
Uniprot ID:
Q92643
Molecular weight:
45251.4
General function:
Involved in tubulin binding
Specific function:
Essential for GPI-anchoring of precursor proteins but not for GPI synthesis. Acts before or during formation of the carbonyl intermediate
Gene Name:
GPAA1
Uniprot ID:
O43292
Molecular weight:
67622.5
General function:
Involved in glycolipid transporter activity
Specific function:
Not Available
Gene Name:
PLEKHA9
Uniprot ID:
O95397
Molecular weight:
43538.3
General function:
Involved in glycolipid transporter activity
Specific function:
Not Available
Gene Name:
GLTPD2
Uniprot ID:
A6NH11
Molecular weight:
31641.2
General function:
Involved in glycolipid transporter activity
Specific function:
Not Available
Gene Name:
PLEKHA8
Uniprot ID:
B5MDU3
Molecular weight:
49308.8
General function:
Involved in immune response
Specific function:
Antigen-presenting protein that binds self and non-self lipid and glycolipid antigens and presents them to T-cell receptors on natural killer T-cells
Gene Name:
CD1A
Uniprot ID:
P06126
Molecular weight:
37077.1
General function:
Involved in glycolipid transporter activity
Specific function:
Not Available
Gene Name:
GLTPD1
Uniprot ID:
Q5TA50
Molecular weight:
24364.8
General function:
Involved in immune response
Specific function:
Antigen-presenting protein that binds self and non-self lipid and glycolipid antigens and presents them to T-cell receptors on natural killer T-cells
Gene Name:
CD1C
Uniprot ID:
P29017
Molecular weight:
37653.7
General function:
Involved in lipid binding
Specific function:
Binds to the lipid A moiety of bacterial lipopolysaccharides (LPS), a glycolipid present in the outer membrane of all Gram-negative bacteria. The LBP/LPS complex seems to interact with the CD14 receptor
Gene Name:
LBP
Uniprot ID:
P18428
Molecular weight:
53383.0
General function:
Involved in glycolipid transporter activity
Specific function:
Not Available
Gene Name:
DKFZp434L0435
Uniprot ID:
Q9UFH6
Molecular weight:
6175.1
General function:
Involved in immune response
Specific function:
Antigen-presenting protein that binds self and non-self lipid and glycolipid antigens and presents them to T-cell receptors on natural killer T-cells
Gene Name:
CD1B
Uniprot ID:
P29016
Molecular weight:
36939.1
General function:
Involved in glycolipid transporter activity
Specific function:
Accelerates the intermembrane transfer of various glycolipids. Catalyzes the transfer of various glycosphingolipids between membranes but does not catalyze the transfer of phospholipids. May be involved in the intracellular translocation of glucosylceramides
Gene Name:
GLTP
Uniprot ID:
Q9NZD2
Molecular weight:
23849.6