You are using an unsupported browser. Please upgrade your browser to a newer version to get the best experience on Human Metabolome Database.
Record Information
Version3.6
Creation Date2005-11-16 15:48:42 UTC
Update Date2016-02-11 01:03:56 UTC
HMDB IDHMDB01167
Secondary Accession NumbersNone
Metabolite Identification
Common NamePyruvaldehyde
DescriptionPyruvaldehyde is an organic compound used often as a reagent in organic synthesis, as a flavoring agent, and in tanning. It has been demonstrated as an intermediate in the metabolism of acetone and its derivatives in isolated cell preparations, in various culture media, and in vivo in certain animals.
Structure
Thumb
Synonyms
ValueSource
1,2-PropanedioneChEBI
2-KetopropionaldehydeChEBI
2-OxopropanalChEBI
2-OxopropionaldehydeChEBI
AcetylformaldehydeChEBI
AcetylformylChEBI
alpha-KetopropionaldehydeChEBI
CH3COCHOChEBI
PyruvaldehydeChEBI
Pyruvic aldehydeChEBI
a-KetopropionaldehydeGenerator
α-ketopropionaldehydeGenerator
1-KetopropionaldehydeHMDB
2-keto PropionaldehydeHMDB
2-oxo-PropionaldehydeHMDB
KetopropionaldehydeHMDB
PropanedioneHMDB
PropanoloneHMDB
Pyroracemic aldehydeHMDB
Chemical FormulaC3H4O2
Average Molecular Weight72.0627
Monoisotopic Molecular Weight72.021129372
IUPAC Name2-oxopropanal
Traditional Namemethylglyoxal
CAS Registry Number78-98-8
SMILES
CC(=O)C=O
InChI Identifier
InChI=1S/C3H4O2/c1-3(5)2-4/h2H,1H3
InChI KeyInChIKey=AIJULSRZWUXGPQ-UHFFFAOYSA-N
Chemical Taxonomy
DescriptionThis compound belongs to the class of organic compounds known as alpha ketoaldehydes. These are organic compounds containing an aldehyde substituted with a keto group on the adjacent carbon.
KingdomOrganic compounds
Super ClassOrganooxygen compounds
ClassCarbonyl compounds
Sub ClassAldehydes
Direct ParentAlpha ketoaldehydes
Alternative Parents
Substituents
  • Alpha-ketoaldehyde
  • Ketone
  • Hydrocarbon derivative
  • Short-chain aldehyde
  • Aliphatic acyclic compound
Molecular FrameworkAliphatic acyclic compounds
External Descriptors
Ontology
StatusDetected and Quantified
Origin
  • Endogenous
Biofunction
  • Component of Pyruvate metabolism
ApplicationNot Available
Cellular locations
  • Extracellular
Physical Properties
StateLiquid
Experimental Properties
PropertyValueReference
Melting Point< 25 °CNot Available
Boiling PointNot AvailableNot Available
Water SolubilityNot AvailableNot Available
LogPNot AvailableNot Available
Predicted Properties
PropertyValueSource
Water Solubility180.0 mg/mLALOGPS
logP-0.38ALOGPS
logP0.2ChemAxon
logS0.4ALOGPS
pKa (Strongest Acidic)16.38ChemAxon
pKa (Strongest Basic)-8ChemAxon
Physiological Charge0ChemAxon
Hydrogen Acceptor Count2ChemAxon
Hydrogen Donor Count0ChemAxon
Polar Surface Area34.14 Å2ChemAxon
Rotatable Bond Count1ChemAxon
Refractivity17.05 m3·mol-1ChemAxon
Polarizability6.42 Å3ChemAxon
Number of Rings0ChemAxon
Bioavailability1ChemAxon
Rule of FiveYesChemAxon
Ghose FilterYesChemAxon
Veber's RuleYesChemAxon
MDDR-like RuleYesChemAxon
Spectra
Spectra
Spectrum TypeDescriptionSplash Key
LC-MS/MSLC-MS/MS Spectrum - Quattro_QQQ 10V, Positive (Annotated)splash10-00dj-9000000000-964129275940a60a617dView in MoNA
LC-MS/MSLC-MS/MS Spectrum - Quattro_QQQ 25V, Positive (Annotated)splash10-006y-9000000000-0ae1e5fd2d50b28f967cView in MoNA
LC-MS/MSLC-MS/MS Spectrum - Quattro_QQQ 40V, Positive (Annotated)splash10-00dj-9000000000-964129275940a60a617dView in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 10V, Positivesplash10-00di-9000000000-110d6fcd891f2c54a2cbView in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 20V, Positivesplash10-05fr-9000000000-bec3651f9ea6825cf4f7View in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 40V, Positivesplash10-0a4i-9000000000-8db5b1ba128748e220c3View in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 10V, Negativesplash10-00di-9000000000-f968a2358e6fd85ae268View in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 20V, Negativesplash10-00di-9000000000-0797bdeaa575b54943c5View in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 40V, Negativesplash10-0uk9-9000000000-89ef1c082b2ef672eb67View in MoNA
Biological Properties
Cellular Locations
  • Extracellular
Biofluid Locations
  • Blood
  • Urine
Tissue Location
  • Fibroblasts
  • Kidney
  • Lens
  • Liver
Pathways
NameSMPDB LinkKEGG Link
3-Phosphoglycerate dehydrogenase deficiencySMP00721Not Available
Dihydropyrimidine Dehydrogenase Deficiency (DHPD)SMP00179Not Available
Dimethylglycine Dehydrogenase DeficiencySMP00242Not Available
Dimethylglycine Dehydrogenase DeficiencySMP00484Not Available
Glycine and Serine MetabolismSMP00004map00260
Hyperglycinemia, non-ketoticSMP00485Not Available
Leigh SyndromeSMP00196Not Available
Non Ketotic HyperglycinemiaSMP00223Not Available
Primary hyperoxaluria II, PH2SMP00558Not Available
Pyruvaldehyde DegradationSMP00459Not Available
Pyruvate Decarboxylase E1 Component Deficiency (PDHE1 Deficiency)SMP00334Not Available
Pyruvate Dehydrogenase Complex DeficiencySMP00212Not Available
Pyruvate kinase deficiencySMP00559Not Available
Pyruvate MetabolismSMP00060map00620
SarcosinemiaSMP00244Not Available
Normal Concentrations
BiofluidStatusValueAgeSexConditionReferenceDetails
BloodDetected and Quantified110.0 +/- 77.0 uMAdult (>18 years old)MaleNormal
    • Geigy Scientific ...
details
BloodDetected and Quantified0.59 (0.44-0.74) uMAdult (>18 years old)BothNormal details
Abnormal Concentrations
BiofluidStatusValueAgeSexConditionReferenceDetails
BloodDetected and Quantified3.0 (2.4-3.6) uMAdult (>18 years old)BothDiabetes details
UrineDetected and Quantified0.22 (0.16-0.23) umol/mmol creatinineAdult (>18 years old)BothDiabetes details
Associated Disorders and Diseases
Disease References
Diabetes mellitus type 2
  1. Khuhawar MY, Zardari LA, Laghari AJ: Capillary gas chromatographic determination of methylglyoxal from serum of diabetic patients by precolumn derivatization with 1,2-diamonopropane. J Chromatogr B Analyt Technol Biomed Life Sci. 2008 Sep 15;873(1):15-9. Epub 2008 May 17. [18760976 ]
Associated OMIM IDs
DrugBank IDNot Available
DrugBank Metabolite IDNot Available
Phenol Explorer Compound IDNot Available
Phenol Explorer Metabolite IDNot Available
FoodDB IDFDB008295
KNApSAcK IDC00007562
Chemspider ID857
KEGG Compound IDC00546
BioCyc IDMETHYL-GLYOXAL
BiGG ID35307
Wikipedia LinkPyruvaldehyde
NuGOwiki LinkHMDB01167
Metagene LinkHMDB01167
METLIN ID6049
PubChem Compound880
PDB IDNot Available
ChEBI ID17158
References
Synthesis ReferenceZhang, Jing-An; Chen, Yu-Ping. Synthesis of pyruvaldehyde. Jingxi Huagong (2000), 17(9), 507-510.
Material Safety Data Sheet (MSDS)Download (PDF)
General References
  1. Wondrak GT, Cervantes-Laurean D, Roberts MJ, Qasem JG, Kim M, Jacobson EL, Jacobson MK: Identification of alpha-dicarbonyl scavengers for cellular protection against carbonyl stress. Biochem Pharmacol. 2002 Feb 1;63(3):361-73. [11853687 ]
  2. Mottaran E, Stewart SF, Rolla R, Vay D, Cipriani V, Moretti M, Vidali M, Sartori M, Rigamonti C, Day CP, Albano E: Lipid peroxidation contributes to immune reactions associated with alcoholic liver disease. Free Radic Biol Med. 2002 Jan 1;32(1):38-45. [11755315 ]
  3. Lo TW, Selwood T, Thornalley PJ: The reaction of methylglyoxal with aminoguanidine under physiological conditions and prevention of methylglyoxal binding to plasma proteins. Biochem Pharmacol. 1994 Nov 16;48(10):1865-70. [7986197 ]
  4. Gildersleeve DL, Tobes MC, Natale RB: Rapid analysis for methylglyoxal bis(guanylhydrazone) by reversed-phase ion-pair liquid chromatography. Clin Chem. 1985 Dec;31(12):1979-84. [4064286 ]
  5. Ahmed N, Thornalley PJ, Dawczynski J, Franke S, Strobel J, Stein G, Haik GM: Methylglyoxal-derived hydroimidazolone advanced glycation end-products of human lens proteins. Invest Ophthalmol Vis Sci. 2003 Dec;44(12):5287-92. [14638728 ]
  6. Seppanen P, Alhonen-Hongisto L, Janne J: Polyamine deprivation-induced enhanced uptake of methylglyoxal bis(guanylhydrazone) by tumor cells. Biochim Biophys Acta. 1981 May 5;674(2):169-77. [6786360 ]
  7. Ahmed MU, Brinkmann Frye E, Degenhardt TP, Thorpe SR, Baynes JW: N-epsilon-(carboxyethyl)lysine, a product of the chemical modification of proteins by methylglyoxal, increases with age in human lens proteins. Biochem J. 1997 Jun 1;324 ( Pt 2):565-70. [9182719 ]
  8. Riley ML, Harding JJ: The reaction of methylglyoxal with human and bovine lens proteins. Biochim Biophys Acta. 1995 Jan 25;1270(1):36-43. [7827133 ]
  9. Beisswenger PJ, Drummond KS, Nelson RG, Howell SK, Szwergold BS, Mauer M: Susceptibility to diabetic nephropathy is related to dicarbonyl and oxidative stress. Diabetes. 2005 Nov;54(11):3274-81. [16249455 ]
  10. Nemet I, Varga-Defterdarovic L, Turk Z: Preparation and quantification of methylglyoxal in human plasma using reverse-phase high-performance liquid chromatography. Clin Biochem. 2004 Oct;37(10):875-81. [15369718 ]
  11. Thornalley PJ, Argirova M, Ahmed N, Mann VM, Argirov O, Dawnay A: Mass spectrometric monitoring of albumin in uremia. Kidney Int. 2000 Nov;58(5):2228-34. [11044246 ]
  12. Baskaran S, Rajan DP, Balasubramanian KA: Formation of methylglyoxal by bacteria isolated from human faeces. J Med Microbiol. 1989 Mar;28(3):211-5. [2926792 ]
  13. Kuhla B, Luth HJ, Haferburg D, Boeck K, Arendt T, Munch G: Methylglyoxal, glyoxal, and their detoxification in Alzheimer's disease. Ann N Y Acad Sci. 2005 Jun;1043:211-6. [16037241 ]
  14. Schupp N, Schinzel R, Heidland A, Stopper H: Genotoxicity of advanced glycation end products: involvement of oxidative stress and of angiotensin II type 1 receptors. Ann N Y Acad Sci. 2005 Jun;1043:685-95. [16037294 ]
  15. Haik GM Jr, Lo TW, Thornalley PJ: Methylglyoxal concentration and glyoxalase activities in the human lens. Exp Eye Res. 1994 Oct;59(4):497-500. [7859825 ]
  16. Shamsi FA, Lin K, Sady C, Nagaraj RH: Methylglyoxal-derived modifications in lens aging and cataract formation. Invest Ophthalmol Vis Sci. 1998 Nov;39(12):2355-64. [9804144 ]
  17. Jan CR, Chen CH, Wang SC, Kuo SY: Effect of methylglyoxal on intracellular calcium levels and viability in renal tubular cells. Cell Signal. 2005 Jul;17(7):847-55. Epub 2004 Dec 8. [15763427 ]
  18. Ahmed N, Dobler D, Dean M, Thornalley PJ: Peptide mapping identifies hotspot site of modification in human serum albumin by methylglyoxal involved in ligand binding and esterase activity. J Biol Chem. 2005 Feb 18;280(7):5724-32. Epub 2004 Nov 22. [15557329 ]

Enzymes

General function:
Involved in oxidoreductase activity
Specific function:
Catalyzes the NADPH-dependent reduction of a wide variety of carbonyl-containing compounds to their corresponding alcohols with a broad range of catalytic efficiencies.
Gene Name:
AKR1B1
Uniprot ID:
P15121
Molecular weight:
35853.125
Reactions
Lactaldehyde + NAD → Pyruvaldehyde + NADH + Hydrogen Iondetails
General function:
Involved in oxidoreductase activity
Specific function:
Catalyzes the oxidative deamination of biogenic and xenobiotic amines and has important functions in the metabolism of neuroactive and vasoactive amines in the central nervous system and peripheral tissues. MAOB preferentially degrades benzylamine and phenylethylamine.
Gene Name:
MAOB
Uniprot ID:
P27338
Molecular weight:
58762.475
Reactions
Aminoacetone + Water + Oxygen → Pyruvaldehyde + Ammonia + Hydrogen peroxidedetails
General function:
Involved in oxidoreductase activity
Specific function:
Catalyzes the oxidative deamination of biogenic and xenobiotic amines and has important functions in the metabolism of neuroactive and vasoactive amines in the central nervous system and peripheral tissues. MAOA preferentially oxidizes biogenic amines such as 5-hydroxytryptamine (5-HT), norepinephrine and epinephrine.
Gene Name:
MAOA
Uniprot ID:
P21397
Molecular weight:
59681.27
Reactions
Aminoacetone + Water + Oxygen → Pyruvaldehyde + Ammonia + Hydrogen peroxidedetails
General function:
Lipid transport and metabolism
Specific function:
Catalyzes fat and vitamin absorption. Acts in concert with pancreatic lipase and colipase for the complete digestion of dietary triglycerides.
Gene Name:
CEL
Uniprot ID:
P19835
Molecular weight:
79666.385
General function:
Involved in copper ion binding
Specific function:
Catalyzes the degradation of compounds such as putrescine, histamine, spermine, and spermidine, substances involved in allergic and immune responses, cell proliferation, tissue differentiation, tumor formation, and possibly apoptosis. Placental DAO is thought to play a role in the regulation of the female reproductive function.
Gene Name:
ABP1
Uniprot ID:
P19801
Molecular weight:
85377.1
General function:
Involved in oxidoreductase activity, acting on the CH-OH group of donors, NAD or NADP as acceptor
Specific function:
Enzyme with hydroxy-pyruvate reductase, glyoxylate reductase and D-glycerate dehydrogenase enzymatic activities. Reduces hydroxypyruvate to D-glycerate, glyoxylate to glycolate oxidizes D-glycerate to hydroxypyruvate.
Gene Name:
GRHPR
Uniprot ID:
Q9UBQ7
Molecular weight:
35667.875
Reactions
D-Lactaldehyde + NAD → Pyruvaldehyde + NADH + Hydrogen Iondetails
General function:
Involved in lactoylglutathione lyase activity
Specific function:
Catalyzes the conversion of hemimercaptal, formed from methylglyoxal and glutathione, to S-lactoylglutathione. Involved in the regulation of TNF-induced transcriptional activity of NF-kappa-B.
Gene Name:
GLO1
Uniprot ID:
Q04760
Molecular weight:
20777.515
Reactions
S-Lactoylglutathione → Glutathione + Pyruvaldehydedetails
General function:
Involved in copper ion binding
Specific function:
Cell adhesion protein that participates in lymphocyte recirculation by mediating the binding of lymphocytes to peripheral lymph node vascular endothelial cells in an L-selectin-independent fashion. Has a monoamine oxidase activity. May play a role in adipogenesis.
Gene Name:
AOC3
Uniprot ID:
Q16853
Molecular weight:
84621.27
Reactions
Aminoacetone + Water + Oxygen → Pyruvaldehyde + Ammonia + Hydrogen peroxidedetails
General function:
Involved in copper ion binding
Specific function:
Has a monoamine oxidase activity with substrate specificity for 2-phenylethylamine and tryptamine. May play a role in adipogenesis. May be a critical modulator of signal transmission in retina.
Gene Name:
AOC2
Uniprot ID:
O75106
Molecular weight:
80515.11
Reactions
Aminoacetone + Water + Oxygen → Pyruvaldehyde + Ammonia + Hydrogen peroxidedetails
General function:
Involved in oxidoreductase activity
Specific function:
Does not exhibit retinol dehydrogenase (RDH) activity in vitro
Gene Name:
RDH13
Uniprot ID:
Q8NBN7
Molecular weight:
35931.8
General function:
Not Available
Specific function:
Acts as all-trans-retinaldehyde reductase. Can efficiently reduce aliphatic and aromatic aldehydes, and is less active on hexoses (in vitro). May be responsible for detoxification of reactive aldehydes in the digested food before the nutrients are passed on to other organs.
Gene Name:
AKR1B10
Uniprot ID:
O60218
Molecular weight:
Not Available
Reactions
Lactaldehyde + NAD → Pyruvaldehyde + NADH + Hydrogen Iondetails