You are using an unsupported browser. Please upgrade your browser to a newer version to get the best experience on Human Metabolome Database.
Record Information
Version3.6
Creation Date2006-05-22 14:17:29 UTC
Update Date2013-02-08 18:21:39 UTC
HMDB IDHMDB01967
Secondary Accession NumbersNone
Metabolite Identification
Common NameCarbon dioxide
DescriptionCarbon dioxide is a colorless, odorless gas that can be formed by the body and is necessary for the respiration cycle of plants and animals. Carbon dioxide is produced during respiration by all animals, fungi and microorganisms that depend on living and decaying plants for food, either directly or indirectly. It is, therefore, a major component of the carbon cycle. Additionally, carbon dioxide is used by plants during photosynthesis to make sugars which may either be consumed again in respiration or used as the raw material to produce polysaccharides such as starch and cellulose, proteins and the wide variety of other organic compounds required for plant growth and development. When inhaled at concentrations much higher than usual atmospheric levels, it can produce a sour taste in the mouth and a stinging sensation in the nose and throat. These effects result from the gas dissolving in the mucous membranes and saliva, forming a weak solution of carbonic acid. Carbon dioxide is used by the food industry, the oil industry, and the chemical industry. Carbon dioxide is used to produce carbonated soft drinks and soda water. Traditionally, the carbonation in beer and sparkling wine comes about through natural fermentation, but some manufacturers carbonate these drinks artificially.
Structure
Thumb
Synonyms
  1. Carbon oxide
  2. Carbon-12 dioxide
  3. Carbonic acid anhydride
  4. Carbonic acid gas
  5. Carbonic anhydride
Chemical FormulaCO2
Average Molecular Weight44.0095
Monoisotopic Molecular Weight43.989829244
IUPAC Namemethanedione
Traditional Namecarbon dioxide
CAS Registry Number124-38-9
SMILES
O=C=O
InChI Identifier
InChI=1S/CO2/c2-1-3
InChI KeyCURLTUGMZLYLDI-UHFFFAOYSA-N
Chemical Taxonomy
KingdomOrganic Compounds
Super ClassAliphatic Acyclic Compounds
ClassN/A
Sub ClassN/A
Other Descriptors
  • a small molecule(Cyc)
  • carbon oxide(ChEBI)
Substituents
  • N/A
Direct ParentAliphatic Acyclic Compounds
Ontology
StatusDetected and Quantified
Origin
  • Drug metabolite
  • Endogenous
Biofunction
  • Osmolyte, enzyme cofactor, signalling
  • Waste products
ApplicationNot Available
Cellular locations
  • Cytoplasm
  • Extracellular
  • Mitochondria
  • Nucleus
  • Endoplasmic reticulum
  • Golgi apparatus
  • Peroxisome
Physical Properties
StateLiquid
Experimental Properties
PropertyValueReference
Melting Point-56.5 °CNot Available
Boiling PointNot AvailableNot Available
Water Solubility1.48 mg/mL at 25 °CNot Available
LogP0.83HANSCH,C ET AL. (1995)
Predicted Properties
PropertyValueSource
Water Solubility186.0ALOGPS
logP-0.63ALOGPS
logP-0.28ChemAxon
logS0.63ALOGPS
Physiological Charge0ChemAxon
Hydrogen Acceptor Count2ChemAxon
Hydrogen Donor Count0ChemAxon
Polar Surface Area34.14 Å2ChemAxon
Rotatable Bond Count0ChemAxon
Refractivity6.38 m3·mol-1ChemAxon
Polarizability2.57 Å3ChemAxon
Spectra
SpectraMS
Biological Properties
Cellular Locations
  • Cytoplasm
  • Extracellular
  • Mitochondria
  • Nucleus
  • Endoplasmic reticulum
  • Golgi apparatus
  • Peroxisome
Biofluid Locations
  • Blood
  • Urine
Tissue Location
  • Kidney
  • Liver
Pathways
NameSMPDB LinkKEGG Link
Ammonia RecyclingSMP00009map00910
Carnitine SynthesisSMP00465Not Available
Catecholamine BiosynthesisSMP00012map00350
Citric Acid CycleSMP00057map00020
Folate MetabolismSMP00053map00670
Glycine and Serine MetabolismSMP00004map00260
Histidine MetabolismSMP00044map00340
Ketone Body MetabolismSMP00071map00072
Methionine MetabolismSMP00033map00270
Pentose Phosphate PathwaySMP00031map00030
Spermidine and Spermine BiosynthesisSMP00445Not Available
Threonine and 2-Oxobutanoate DegradationSMP00452Not Available
Transfer of Acetyl Groups into MitochondriaSMP00466Not Available
Vitamin K MetabolismSMP00464Not Available
Normal Concentrations
BiofluidStatusValueAgeSexConditionReferenceDetails
BloodDetected and Quantified25600.0 +/- 1430.0 uMAdult (>18 years old)FemaleNormal
    • Geigy Scientific ...
details
BloodDetected and Quantified17000.00 (11100.0-21200.0) uMNewborn (0-30 days old)BothNormal
    • Geigy Scientific ...
details
BloodDetected and Quantified20900.0 +/- 1100.0 uMChildren (1-13 years old)Not SpecifiedNormal
    • Geigy Scientific ...
details
BloodDetected and Quantified21600.0 +/- 600.0 uMAdult (>18 years old)MaleNormal
    • Geigy Scientific ...
details
UrineExpected but not QuantifiedNot ApplicableNot AvailableNot AvailableNormal
  • Not Applicable
details
Abnormal Concentrations
Not Available
Associated Disorders and Diseases
Disease ReferencesNone
Associated OMIM IDsNone
DrugBank IDNot Available
DrugBank Metabolite IDDBMET00423
Phenol Explorer Compound IDNot Available
Phenol Explorer Metabolite IDNot Available
FoodDB IDFDB014084
KNApSAcK IDNot Available
Chemspider ID274
KEGG Compound IDC00011
BioCyc IDNot Available
BiGG ID33506
Wikipedia LinkCarbon Dioxide
NuGOwiki LinkHMDB01967
Metagene LinkHMDB01967
METLIN ID3199
PubChem Compound280
PDB IDCO2
ChEBI ID16526
References
Synthesis ReferenceCallahan, Richard A. Process and apparatus for producing liquid carbon dioxide. U.S. (1993), 11 pp.
Material Safety Data Sheet (MSDS)Download (PDF)
General ReferencesNot Available

Only showing the first 50 proteins. There are 107 proteins in total.

Enzymes

General function:
Involved in catalytic activity
Specific function:
The pyruvate dehydrogenase complex catalyzes the overall conversion of pyruvate to acetyl-CoA and CO(2), and thereby links the glycolytic pathway to the tricarboxylic cycle.
Gene Name:
PDHB
Uniprot ID:
P11177
Molecular weight:
39233.1
Reactions
Pyruvic acid + Thiamine pyrophosphate → 2-(a-Hydroxyethyl)thiamine diphosphate + Carbon dioxidedetails
Pyruvic acid + Enzyme N6-(lipoyl)lysine → [Dihydrolipoyllysine-residue acetyltransferase] S-acetyldihydrolipoyllysine + Carbon dioxidedetails
General function:
Involved in malonyl-CoA decarboxylase activity
Specific function:
Catalyzes the conversion of malonyl-CoA to acetyl-CoA. In the fatty acid biosynthesis MCD selectively removes malonyl-CoA and thus assures that methyl-malonyl-CoA is the only chain elongating substrate for fatty acid synthase and that fatty acids with multiple methyl side chains are produced. In peroxisomes it may be involved in degrading intraperoxisomal malonyl-CoA, which is generated by the peroxisomal beta-oxidation of odd chain-length dicarboxylic fatty acids.
Gene Name:
MLYCD
Uniprot ID:
O95822
Molecular weight:
55002.94
Reactions
Malonyl-CoA → Acetyl-CoA + Carbon dioxidedetails
General function:
Involved in 5-aminolevulinate synthase activity
Specific function:
Not Available
Gene Name:
ALAS2
Uniprot ID:
P22557
Molecular weight:
64632.86
Reactions
Succinyl-CoA + Glycine → 5-Aminolevulinic acid + Coenzyme A + Carbon dioxidedetails
General function:
Involved in 5-aminolevulinate synthase activity
Specific function:
Not Available
Gene Name:
ALAS1
Uniprot ID:
P13196
Molecular weight:
70580.325
Reactions
Succinyl-CoA + Glycine → 5-Aminolevulinic acid + Coenzyme A + Carbon dioxidedetails
General function:
Involved in transferase activity
Specific function:
Fatty acid synthetase catalyzes the formation of long-chain fatty acids from acetyl-CoA, malonyl-CoA and NADPH. This multifunctional protein has 7 catalytic activities and an acyl carrier protein.
Gene Name:
FASN
Uniprot ID:
P49327
Molecular weight:
273424.06
Reactions
Acetyl-[acyl-carrier protein] + Malonyl-[acyl-carrier protein] → Acetoacetyl-[acp] + Carbon dioxide + Acyl-carrier proteindetails
Dodecanoyl-[acyl-carrier protein] + Malonyl-[acyl-carrier protein] → 3-Oxotetradecanoyl-[acp] + Carbon dioxide + Acyl-carrier proteindetails
Butyryl-[acp] + Malonyl-[acyl-carrier protein] → 3-Oxohexanoyl-[acp] + Carbon dioxide + Acyl-carrier proteindetails
Hexanoyl-[acp] + Malonyl-[acyl-carrier protein] → 3-Oxooctanoyl-[acp] + Carbon dioxide + Acyl-carrier proteindetails
Octanoyl-[acp] + Malonyl-[acyl-carrier protein] → 3-Oxodecanoyl-[acp] + Carbon dioxide + Acyl-carrier proteindetails
Decanoyl-[acp] + Malonyl-[acyl-carrier protein] → 3-Oxododecanoyl-[acp] + Carbon dioxide + Acyl-carrier proteindetails
Tetradecanoyl-[acp] + Malonyl-[acyl-carrier protein] → 3-Oxohexadecanoyl-[acp] + Carbon dioxide + Acyl-carrier proteindetails
General function:
Involved in oxidoreductase activity, acting on the aldehyde or oxo group of donors, disulfide as acceptor
Specific function:
The pyruvate dehydrogenase complex catalyzes the overall conversion of pyruvate to acetyl-CoA and CO(2), and thereby links the glycolytic pathway to the tricarboxylic cycle.
Gene Name:
PDHA1
Uniprot ID:
P08559
Molecular weight:
43295.255
Reactions
Pyruvic acid + Thiamine pyrophosphate → 2-(a-Hydroxyethyl)thiamine diphosphate + Carbon dioxidedetails
Pyruvic acid + Enzyme N6-(lipoyl)lysine → [Dihydrolipoyllysine-residue acetyltransferase] S-acetyldihydrolipoyllysine + Carbon dioxidedetails
General function:
Involved in oxidoreductase activity, acting on the aldehyde or oxo group of donors, disulfide as acceptor
Specific function:
The pyruvate dehydrogenase complex catalyzes the overall conversion of pyruvate to acetyl-CoA and CO(2), and thereby links the glycolytic pathway to the tricarboxylic cycle.
Gene Name:
PDHA2
Uniprot ID:
P29803
Molecular weight:
42932.855
Reactions
Pyruvic acid + Thiamine pyrophosphate → 2-(a-Hydroxyethyl)thiamine diphosphate + Carbon dioxidedetails
Pyruvic acid + Enzyme N6-(lipoyl)lysine → [Dihydrolipoyllysine-residue acetyltransferase] S-acetyldihydrolipoyllysine + Carbon dioxidedetails
General function:
Involved in oxidoreductase activity
Specific function:
Plays a role in valine and pyrimidine metabolism. Binds fatty acyl-CoA.
Gene Name:
ALDH6A1
Uniprot ID:
Q02252
Molecular weight:
57839.31
Reactions
Malonic semialdehyde + Coenzyme A + NAD → Acetyl-CoA + Carbon dioxide + NADH + Hydrogen Iondetails
Malonic semialdehyde + Coenzyme A + NADP → Acetyl-CoA + Carbon dioxide + NADPH + Hydrogen Iondetails
(S)-Methylmalonic acid semialdehyde + Coenzyme A + NAD → Propionyl-CoA + Carbon dioxide + NADH + Hydrogen Iondetails
General function:
Involved in oxidoreductase activity
Specific function:
Lipoamide dehydrogenase is a component of the glycine cleavage system as well as of the alpha-ketoacid dehydrogenase complexes. Involved in the hyperactivation of spermatazoa during capacitation and in the spermatazoal acrosome reaction.
Gene Name:
DLD
Uniprot ID:
P09622
Molecular weight:
54176.91
General function:
Involved in acyltransferase activity
Specific function:
The pyruvate dehydrogenase complex catalyzes the overall conversion of pyruvate to acetyl-CoA and CO(2), and thereby links the glycolytic pathway to the tricarboxylic cycle.
Gene Name:
DLAT
Uniprot ID:
P10515
Molecular weight:
68996.03
General function:
Involved in oxidoreductase activity
Specific function:
This is a copper-containing oxidase that functions in the formation of pigments such as melanins and other polyphenolic compounds. Catalyzes the rate-limiting conversions of tyrosine to DOPA, DOPA to DOPA-quinone and possibly 5,6-dihydroxyindole to indole-5,6 quinone.
Gene Name:
TYR
Uniprot ID:
P14679
Molecular weight:
60392.69
General function:
Involved in acyl-CoA dehydrogenase activity
Specific function:
Catalyzes the oxidative decarboxylation of glutaryl-CoA to crotonyl-CoA and CO(2) in the degradative pathway of L-lysine, L-hydroxylysine, and L-tryptophan metabolism. It uses electron transfer flavoprotein as its electron acceptor. Isoform Short is inactive.
Gene Name:
GCDH
Uniprot ID:
Q92947
Molecular weight:
48126.715
Reactions
Glutaryl-CoA + FAD → FADH + (E)-but-2-enoyl-CoA + Carbon dioxidedetails
Glutaryl-CoA + Electron-transferring flavoprotein → (E)-but-2-enoyl-CoA + Reduced electron-transferring flavoprotein + Carbon dioxidedetails
General function:
Involved in lipid metabolic process
Specific function:
Crucial for the intracellular hydrolysis of cholesteryl esters and triglycerides that have been internalized via receptor-mediated endocytosis of lipoprotein particles. Important in mediating the effect of LDL (low density lipoprotein) uptake on suppression of hydroxymethylglutaryl-CoA reductase and activation of endogenous cellular cholesteryl ester formation.
Gene Name:
LIPA
Uniprot ID:
P38571
Molecular weight:
45418.71
General function:
Involved in uroporphyrinogen decarboxylase activity
Specific function:
Catalyzes the decarboxylation of four acetate groups of uroporphyrinogen-III to yield coproporphyrinogen-III.
Gene Name:
UROD
Uniprot ID:
P06132
Molecular weight:
40786.58
Reactions
Uroporphyrinogen III → Coproporphyrinogen III + Carbon dioxidedetails
Uroporphyrinogen I → Coproporphyrinogen I + Carbon dioxidedetails
General function:
Involved in coproporphyrinogen oxidase activity
Specific function:
Key enzyme in heme biosynthesis. Catalyzes the oxidative decarboxylation of propionic acid side chains of rings A and B of coproporphyrinogen III.
Gene Name:
CPOX
Uniprot ID:
P36551
Molecular weight:
50151.605
Reactions
Coproporphyrinogen III + Oxygen → Protoporphyrinogen IX + Carbon dioxide + Waterdetails
General function:
Involved in catalytic activity
Specific function:
Converts alpha-amino-beta-carboxymuconate-epsilon-semialdehyde (ACMS) to alpha-aminomuconate semialdehyde (AMS). ACMS can be converted non-enzymatically to quinolate (QA), a key precursor of NAD, and a potent endogenous excitotoxin of neuronal cells which is implicated in the pathogenesis of various neurodegenerative disorders. In the presence of ACMSD, ACMS is converted to AMS, a benign catabolite. ACMSD ultimately controls the metabolic fate of tryptophan catabolism along the kynurenine pathway.
Gene Name:
ACMSD
Uniprot ID:
Q8TDX5
Molecular weight:
38035.045
Reactions
2-Amino-3-carboxymuconic acid semialdehyde → 2-Aminomuconic acid semialdehyde + Carbon dioxidedetails
General function:
Involved in iron ion binding
Specific function:
Not Available
Gene Name:
MSMO1
Uniprot ID:
Q15800
Molecular weight:
19470.325
General function:
Involved in 3-beta-hydroxy-delta5-steroid dehydrogenase activity
Specific function:
Not Available
Gene Name:
NSDHL
Uniprot ID:
Q15738
Molecular weight:
41899.99
Reactions
4a-Carboxy-4b-methyl-5a-cholesta-8,24-dien-3b-ol + NADP → 3-Keto-4-methylzymosterol + NADPH + Hydrogen Ion + Carbon dioxidedetails
General function:
Involved in electron carrier activity
Specific function:
Converts phytanoyl-CoA to 2-hydroxyphytanoyl-CoA.
Gene Name:
PHYH
Uniprot ID:
O14832
Molecular weight:
38538.065
General function:
Involved in carboxy-lyase activity
Specific function:
Catalyzes the decarboxylation of L-3,4-dihydroxyphenylalanine (DOPA) to dopamine, L-5-hydroxytryptophan to serotonin and L-tryptophan to tryptamine.
Gene Name:
DDC
Uniprot ID:
P20711
Molecular weight:
53893.755
Reactions
L-Tryptophan → Tryptamine + Carbon dioxidedetails
L-Phenylalanine → Phenylethylamine + Carbon dioxidedetails
L-Tyrosine → Tyramine + Carbon dioxidedetails
L-Histidine → Histamine + Carbon dioxidedetails
L-Dopa → Dopamine + Carbon dioxidedetails
Oxitriptan → Serotonin + Carbon dioxidedetails
5-Hydroxykynurenamine + Carbon dioxide → 5-Hydroxykynureninedetails
General function:
Involved in antioxidant activity
Specific function:
Involved in redox regulation of the cell. Can reduce H(2)O(2) and short chain organic, fatty acid, and phospholipid hydroperoxides. May play a role in the regulation of phospholipid turnover as well as in protection against oxidative injury.
Gene Name:
PRDX6
Uniprot ID:
P30041
Molecular weight:
25034.715
Reactions
L-Phenylalanine + Oxygen → 2-Phenylacetamide + Carbon dioxidedetails
General function:
Involved in catalytic activity
Specific function:
The branched-chain alpha-keto dehydrogenase complex catalyzes the overall conversion of alpha-keto acids to acyl-CoA and CO(2). It contains multiple copies of three enzymatic components: branched-chain alpha-keto acid decarboxylase (E1), lipoamide acyltransferase (E2) and lipoamide dehydrogenase (E3).
Gene Name:
BCKDHB
Uniprot ID:
P21953
Molecular weight:
43122.065
Reactions
Alpha-ketoisovaleric acid + Thiamine pyrophosphate → 2-Methyl-1-hydroxypropyl-ThPP + Carbon dioxidedetails
Ketoleucine + Thiamine pyrophosphate → 3-Methyl-1-hydroxybutyl-ThPP + Carbon dioxidedetails
3-Methyl-2-oxovaleric acid + Thiamine pyrophosphate → 2-Methyl-1-hydroxybutyl-ThPP + Carbon dioxidedetails
General function:
Involved in oxidoreductase activity, acting on the aldehyde or oxo group of donors, disulfide as acceptor
Specific function:
The branched-chain alpha-keto dehydrogenase complex catalyzes the overall conversion of alpha-keto acids to acyl-CoA and CO(2). It contains multiple copies of three enzymatic components: branched-chain alpha-keto acid decarboxylase (E1), lipoamide acyltransferase (E2) and lipoamide dehydrogenase (E3).
Gene Name:
BCKDHA
Uniprot ID:
P12694
Molecular weight:
50470.58
Reactions
Alpha-ketoisovaleric acid + Thiamine pyrophosphate → 2-Methyl-1-hydroxypropyl-ThPP + Carbon dioxidedetails
Ketoleucine + Thiamine pyrophosphate → 3-Methyl-1-hydroxybutyl-ThPP + Carbon dioxidedetails
3-Methyl-2-oxovaleric acid + Thiamine pyrophosphate → 2-Methyl-1-hydroxybutyl-ThPP + Carbon dioxidedetails
General function:
Involved in oxidoreductase activity
Specific function:
Catalyzes the post-translational formation of 4-hydroxyproline in -Xaa-Pro-Gly- sequences in collagens and other proteins.
Gene Name:
P4HA2
Uniprot ID:
O15460
Molecular weight:
60632.19
Reactions
L-Proline + Oxoglutaric acid + Oxygen → 4-Hydroxyproline + Succinic acid + Carbon dioxidedetails
General function:
Involved in oxidoreductase activity
Specific function:
Catalyzes the post-translational formation of 4-hydroxyproline in -Xaa-Pro-Gly- sequences in collagens and other proteins.
Gene Name:
P4HA1
Uniprot ID:
P13674
Molecular weight:
60966.645
Reactions
L-Proline + Oxoglutaric acid + Oxygen → 4-Hydroxyproline + Succinic acid + Carbon dioxidedetails
General function:
Involved in catalytic activity
Specific function:
Involved in the catabolism of quinolinic acid (QA).
Gene Name:
QPRT
Uniprot ID:
Q15274
Molecular weight:
30815.28
Reactions
nicotinate beta-D-ribonucleotide + Pyrophosphate + Carbon dioxide → Quinolinic acid + Phosphoribosyl pyrophosphatedetails
General function:
Involved in catalytic activity
Specific function:
Involved in the urea cycle of ureotelic animals where the enzyme plays an important role in removing excess ammonia from the cell.
Gene Name:
CPS1
Uniprot ID:
P31327
Molecular weight:
165649.075
Reactions
Adenosine triphosphate + Ammonia + Carbon dioxide + Water → ADP + Phosphoric acid + Carbamoyl phosphatedetails
General function:
Involved in iron ion binding
Specific function:
Catalyzes the formation of L-carnitine from gamma-butyrobetaine.
Gene Name:
BBOX1
Uniprot ID:
O75936
Molecular weight:
44714.6
Reactions
4-Trimethylammoniobutanoic acid + Oxoglutaric acid + Oxygen → L-Carnitine + Succinic acid + Carbon dioxidedetails
General function:
Involved in adenosylmethionine decarboxylase activity
Specific function:
Not Available
Gene Name:
AMD1
Uniprot ID:
P17707
Molecular weight:
21301.015
Reactions
S-Adenosylmethionine + Hydrogen Ion → S-Adenosylmethioninamine + Carbon dioxidedetails
General function:
Involved in oxoglutarate dehydrogenase (succinyl-transferring) activity
Specific function:
The 2-oxoglutarate dehydrogenase complex catalyzes the overall conversion of 2-oxoglutarate to succinyl-CoA and CO(2). It contains multiple copies of three enzymatic components: 2-oxoglutarate dehydrogenase (E1), dihydrolipoamide succinyltransferase (E2) and lipoamide dehydrogenase (E3).
Gene Name:
OGDH
Uniprot ID:
Q02218
Molecular weight:
48179.59
Reactions
Oxoglutaric acid + Thiamine pyrophosphate → 3-Carboxy-1-hydroxypropylthiamine diphosphate + Carbon dioxidedetails
Oxoadipic acid + Coenzyme A + NAD → Glutaryl-CoA + Carbon dioxide + NADH + Hydrogen Iondetails
Oxoadipic acid + Enzyme N6-(lipoyl)lysine → [Dihydrolipoyllysine-residue succinyltransferase] S-glutaryldihydrolipoyllysine + Carbon dioxidedetails
General function:
Involved in oxidoreductase activity
Specific function:
Forms hydroxylysine residues in -Xaa-Lys-Gly- sequences in collagens. These hydroxylysines serve as sites of attachment for carbohydrate units and are essential for the stability of the intermolecular collagen cross-links.
Gene Name:
PLOD1
Uniprot ID:
Q02809
Molecular weight:
83549.55
Reactions
Protein lysine + Oxoglutaric acid + Oxygen → Procollagen 5-hydroxy-L-lysine + Succinic acid + Carbon dioxide + Waterdetails
General function:
Involved in oxidoreductase activity
Specific function:
Forms hydroxylysine residues in -Xaa-Lys-Gly- sequences in collagens. These hydroxylysines serve as sites of attachment for carbohydrate units and are essential for the stability of the intermolecular collagen cross-links.
Gene Name:
PLOD2
Uniprot ID:
O00469
Molecular weight:
84685.07
Reactions
Protein lysine + Oxoglutaric acid + Oxygen → Procollagen 5-hydroxy-L-lysine + Succinic acid + Carbon dioxide + Waterdetails
General function:
Involved in oxidoreductase activity
Specific function:
Forms hydroxylysine residues in -Xaa-Lys-Gly- sequences in collagens. These hydroxylysines serve as sites of attachment for carbohydrate units and are essential for the stability of the intermolecular collagen cross-links.
Gene Name:
PLOD3
Uniprot ID:
O60568
Molecular weight:
84784.505
Reactions
Protein lysine + Oxoglutaric acid + Oxygen → Procollagen 5-hydroxy-L-lysine + Succinic acid + Carbon dioxide + Waterdetails
General function:
Lipid transport and metabolism
Specific function:
Involved in the detoxification of xenobiotics and in the activation of ester and amide prodrugs. Hydrolyzes aromatic and aliphatic esters, but has no catalytic activity toward amides or a fatty acyl-CoA ester. Hydrolyzes the methyl ester group of cocaine to form benzoylecgonine. Catalyzes the transesterification of cocaine to form cocaethylene. Displays fatty acid ethyl ester synthase activity, catalyzing the ethyl esterification of oleic acid to ethyloleate.
Gene Name:
CES1
Uniprot ID:
P23141
Molecular weight:
62520.62
Reactions
Capecitabine + Water → 5'-Deoxy-5-fluorocytidine + 1-Pentanol + Carbon dioxidedetails
General function:
Lipid transport and metabolism
Specific function:
Involved in the detoxification of xenobiotics and in the activation of ester and amide prodrugs. Shows high catalytic efficiency for hydrolysis of cocaine, 4-methylumbelliferyl acetate, heroin and 6-monoacetylmorphine.
Gene Name:
CES2
Uniprot ID:
O00748
Molecular weight:
68898.39
Reactions
Capecitabine + Water → 5'-Deoxy-5-fluorocytidine + 1-Pentanol + Carbon dioxidedetails
General function:
Involved in hydrolase activity, acting on carbon-nitrogen (but not peptide) bonds
Specific function:
Converts N-carbamyl-beta-aminoisobutyric acid and N-carbamyl-beta-alanine to, respectively, beta-aminoisobutyric acid and beta-alanine, ammonia and carbon dioxide.
Gene Name:
UPB1
Uniprot ID:
Q9UBR1
Molecular weight:
43165.705
Reactions
Ureidopropionic acid + Water → Beta-Alanine + Carbon dioxide + Ammoniadetails
Ureidoisobutyric acid + Water → 3-Aminoisobutanoic acid + Carbon dioxide + Ammoniadetails
alpha-Fluoro-beta-ureidopropionic acid + Water → alpha-Fluoro-beta-alanine + Carbon dioxide + Ammoniadetails
General function:
Involved in aminomethyltransferase activity
Specific function:
The glycine cleavage system catalyzes the degradation of glycine.
Gene Name:
AMT
Uniprot ID:
P48728
Molecular weight:
43945.65
Reactions
Glycine + Tetrahydrofolic acid + NAD → 5,10-Methylene-THF + Ammonia + Carbon dioxide + NADH + Hydrogen Iondetails
General function:
Involved in carboxy-lyase activity
Specific function:
Catalyzes the production of GABA.
Gene Name:
GAD2
Uniprot ID:
Q05329
Molecular weight:
65410.77
Reactions
L-Glutamic acid → Gamma-Aminobutyric acid + Carbon dioxidedetails
L-Aspartic acid → Beta-Alanine + Carbon dioxidedetails
Cysteic acid → Taurine + Carbon dioxidedetails
3-Sulfinoalanine → Hypotaurine + Carbon dioxidedetails
General function:
Involved in carboxy-lyase activity
Specific function:
Catalyzes the production of GABA.
Gene Name:
GAD1
Uniprot ID:
Q99259
Molecular weight:
66896.065
Reactions
L-Glutamic acid → Gamma-Aminobutyric acid + Carbon dioxidedetails
L-Aspartic acid → Beta-Alanine + Carbon dioxidedetails
Cysteic acid → Taurine + Carbon dioxidedetails
3-Sulfinoalanine → Hypotaurine + Carbon dioxidedetails
General function:
Involved in gamma-glutamyltransferase activity
Specific function:
Initiates extracellular glutathione (GSH) breakdown, provides cells with a local cysteine supply and contributes to maintain intracellular GSH level. It is part of the cell antioxidant defense mechanism. Catalyzes the transfer of the glutamyl moiety of glutathione to amino acids and dipeptide acceptors. Alternatively, glutathione can be hydrolyzed to give Cys-Gly and gamma glutamate. Isoform 3 seems to be inactive.
Gene Name:
GGT1
Uniprot ID:
P19440
Molecular weight:
61409.67
General function:
Involved in magnesium ion binding
Specific function:
Glycolytic enzyme that catalyzes the transfer of a phosphoryl group from phosphoenolpyruvate (PEP) to ADP, generating ATP. Stimulates POU5F1-mediated transcriptional activation. Plays a general role in caspase independent cell death of tumor cells. The ratio betwween the highly active tetrameric form and nearly inactive dimeric form determines whether glucose carbons are channeled to biosynthetic processes or used for glycolytic ATP production. The transition between the 2 forms contributes to the control of glycolysis and is important for tumor cell proliferation and survival.
Gene Name:
PKM
Uniprot ID:
P14618
Molecular weight:
65930.14
General function:
Involved in magnesium ion binding
Specific function:
Plays a key role in glycolysis (By similarity).
Gene Name:
PKLR
Uniprot ID:
P30613
Molecular weight:
61829.575
General function:
Involved in lyase activity
Specific function:
The glycine cleavage system catalyzes the degradation of glycine. The P protein binds the alpha-amino group of glycine through its pyridoxal phosphate cofactor; CO(2) is released and the remaining methylamine moiety is then transferred to the lipoamide cofactor of the H protein.
Gene Name:
GLDC
Uniprot ID:
P23378
Molecular weight:
112728.805
Reactions
Glycine + Lipoylprotein → S-Aminomethyldihydrolipoylprotein + Carbon dioxidedetails
General function:
Involved in 4-hydroxyphenylpyruvate dioxygenase activity
Specific function:
Key enzyme in the degradation of tyrosine.
Gene Name:
HPD
Uniprot ID:
P32754
Molecular weight:
40497.105
Reactions
Phenylpyruvic acid + Oxygen → Ortho-Hydroxyphenylacetic acid + Carbon dioxidedetails
4-Hydroxyphenylpyruvic acid + Oxygen → Homogentisic acid + Carbon dioxidedetails
General function:
Involved in oxidoreductase activity
Specific function:
Responsible for the reduction of the keto group on the C-3 of sterols.
Gene Name:
HSD17B7
Uniprot ID:
P56937
Molecular weight:
38205.77
General function:
Involved in oxidoreductase activity
Specific function:
Not Available
Gene Name:
ME1
Uniprot ID:
P48163
Molecular weight:
64149.075
Reactions
L-Malic acid + NADP → Pyruvic acid + Carbon dioxide + NADPH + Hydrogen Iondetails
General function:
Involved in oxidoreductase activity
Specific function:
Not Available
Gene Name:
ME3
Uniprot ID:
Q16798
Molecular weight:
67067.875
Reactions
L-Malic acid + NADP → Pyruvic acid + Carbon dioxide + NADPH + Hydrogen Iondetails
General function:
Involved in oxidoreductase activity
Specific function:
Not Available
Gene Name:
ME2
Uniprot ID:
P23368
Molecular weight:
53585.73
Reactions
L-Malic acid + NAD → Pyruvic acid + Carbon dioxide + NADH + Hydrogen Iondetails
General function:
Involved in carboxy-lyase activity
Specific function:
Catalyzes the biosynthesis of histamine from histidine.
Gene Name:
HDC
Uniprot ID:
P19113
Molecular weight:
74139.825
Reactions
L-Histidine → Histamine + Carbon dioxidedetails
General function:
Involved in transferase activity, transferring nitrogenous groups
Specific function:
Serine palmitoyltransferase (SPT). The heterodimer formed with SPTLC2 or SPTLC3 constitutes the catalytic core. The composition of the serine palmitoyltransferase (SPT) complex determines the substrate preference. The SPTLC1-SPTLC2-SPTSSA complex shows a strong preference for C16-CoA substrate, while the SPTLC1-SPTLC3-SPTSSA isozyme uses both C14-CoA and C16-CoA as substrates, with a slight preference for C14-CoA. The SPTLC1-SPTLC2-SPTSSB complex shows a strong preference for C18-CoA substrate, while the SPTLC1-SPTLC3-SPTSSB isozyme displays an ability to use a broader range of acyl-CoAs, without apparent preference.
Gene Name:
SPTLC1
Uniprot ID:
O15269
Molecular weight:
52743.41
Reactions
hexadecanoyl-CoA + L-Serine → 3-Dehydrosphinganine + Coenzyme A + Carbon dioxidedetails

Only showing the first 50 proteins. There are 107 proteins in total.