You are using an unsupported browser. Please upgrade your browser to a newer version to get the best experience on Human Metabolome Database.
Record Information
Version3.6
Creation Date2006-08-13 07:51:53 UTC
Update Date2013-05-29 19:39:14 UTC
HMDB IDHMDB03945
Secondary Accession Numbers
  • HMDB06533
Metabolite Identification
Common Name(2E)-Hexadecenoyl-CoA
Description(2E)-Hexadecenoyl-CoA is an intermediate in fatty acid metabolism, the substrate of the enzyme enoyl-CoA hydratase [EC:4.2.1.17]; (2E)-Hexadecenoyl-CoA is also the substrate of the enzyme trans-2-enoyl-CoA reductase [EC:1.3.1.38], in the fatty acid elongation pathway in mitochondria. (PMID: 1278159 , KEGG).
Structure
Thumb
Synonyms
  1. (2E)-Hexadecenoyl-CoA
  2. (2E)-Hexadecenoyl-Coenzyme A
  3. trans-2-Hexadecenoyl-CoA
  4. trans-2-Hexadecenoyl-Coenzyme A
Chemical FormulaC37H60N7O17P3S
Average Molecular Weight999.895
Monoisotopic Molecular Weight999.297923755
IUPAC Name[(2R,3S,4R,5R)-5-(6-amino-9H-purin-9-yl)-4-hydroxy-3-(phosphonatooxy)oxolan-2-yl]methyl {[(3R)-3-{[2-({2-[(2E)-hexadec-2-enoylsulfanyl]ethyl}carbamoyl)ethyl]carbamoyl}-3-hydroxy-2,2-dimethylpropyl phosphonato]oxy}phosphonate
Traditional IUPAC Name[(2R,3S,4R,5R)-5-(6-aminopurin-9-yl)-4-hydroxy-3-(phosphonatooxy)oxolan-2-yl]methyl [(3R)-3-{[2-({2-[(2E)-hexadec-2-enoylsulfanyl]ethyl}carbamoyl)ethyl]carbamoyl}-3-hydroxy-2,2-dimethylpropyl phosphonato]oxyphosphonate
CAS Registry Number4460-95-1
SMILES
CCCCCCCCCCCCC\C=C\C(=O)SCCNC(=O)CCNC(=O)[C@H](O)C(C)(C)COP(=O)([O-])OP([O-])(=O)OC[C@H]1O[C@H]([C@H](O)[C@@H]1OP(=O)([O-])[O-])N1C=NC2=C1N=CN=C2N
InChI Identifier
InChI=1S/C37H64N7O17P3S/c1-4-5-6-7-8-9-10-11-12-13-14-15-16-17-28(46)65-21-20-39-27(45)18-19-40-35(49)32(48)37(2,3)23-58-64(55,56)61-63(53,54)57-22-26-31(60-62(50,51)52)30(47)36(59-26)44-25-43-29-33(38)41-24-42-34(29)44/h16-17,24-26,30-32,36,47-48H,4-15,18-23H2,1-3H3,(H,39,45)(H,40,49)(H,53,54)(H,55,56)(H2,38,41,42)(H2,50,51,52)/p-4/b17-16+/t26-,30-,31-,32+,36-/m1/s1
InChI KeyJUPAQFRKPHPXLD-MSHHSVQMSA-J
Chemical Taxonomy
KingdomOrganic Compounds
Super ClassLipids
ClassFatty Acid Esters
Sub ClassAcyl CoAs
Other Descriptors
  • Aromatic Heteropolycyclic Compounds
Substituents
  • 1 Phosphoribosyl Imidazole
  • Aminopyrimidine
  • Carboxamide Group
  • Carboxylic Thioester
  • Coenzyme A
  • Enone
  • Glycosyl Compound
  • Imidazole
  • Imidazopyrimidine
  • Monosaccharide Phosphate
  • N Glycosyl Compound
  • Organic Hypophosphite
  • Organic Phosphite
  • Organic Pyrophosphate
  • Oxolane
  • Pentose Monosaccharide
  • Phosphoric Acid Ester
  • Purine
  • Purine Ribonucleoside Diphosphate
  • Pyrimidine
  • Saccharide
  • Secondary Alcohol
  • Secondary Carboxylic Acid Amide
  • Thiocarboxylic Acid Ester
Direct ParentAcyl CoAs
Ontology
StatusExpected and Not Quantified
Origin
  • Endogenous
  • Food
Biofunction
  • Cell signaling
  • Fuel and energy storage
  • Fuel or energy source
  • Lipid biosynthesis, Fatty acid transport
  • Membrane integrity/stability
Application
  • Nutrients
  • Stabilizers
  • Surfactants and Emulsifiers
Cellular locations
  • Extracellular
  • Membrane
Physical Properties
StateSolid
Experimental Properties
PropertyValueReference
Melting PointNot AvailableNot Available
Boiling PointNot AvailableNot Available
Water SolubilityNot AvailableNot Available
LogP2.319Not Available
Predicted Properties
PropertyValueSource
water solubility1.22 g/LALOGPS
logP3.34ALOGPS
logP-0.26ChemAxon
logS-2.9ALOGPS
pKa (strongest acidic)0.83ChemAxon
pKa (strongest basic)4.95ChemAxon
physiological charge-4ChemAxon
hydrogen acceptor count17ChemAxon
hydrogen donor count5ChemAxon
polar surface area374.95ChemAxon
rotatable bond count33ChemAxon
refractivity233.25ChemAxon
polarizability98.77ChemAxon
Spectra
SpectraNot Available
Biological Properties
Cellular Locations
  • Extracellular
  • Membrane
Biofluid LocationsNot Available
Tissue LocationNot Available
Pathways
NameSMPDB LinkKEGG Link
Fatty Acid Elongation In MitochondriaSMP00054map00062
Fatty acid MetabolismSMP00051map00071
Mitochondrial Beta-Oxidation of Long Chain Saturated Fatty AcidsSMP00482Not Available
Normal Concentrations
Not Available
Abnormal Concentrations
Not Available
Associated Disorders and Diseases
Disease ReferencesNone
Associated OMIM IDsNone
DrugBank IDNot Available
DrugBank Metabolite IDNot Available
Phenol Explorer Compound IDNot Available
Phenol Explorer Metabolite IDNot Available
FoodDB IDFDB023264
KNApSAcK IDNot Available
Chemspider ID26332261
KEGG Compound IDC05272
BioCyc IDNot Available
BiGG ID45474
Wikipedia LinkNot Available
NuGOwiki LinkHMDB03945
Metagene LinkHMDB03945
METLIN IDNot Available
PubChem Compound46173176
PDB IDNot Available
ChEBI ID61526
References
Synthesis ReferenceAl-Arif, Adhid; Blecher, Melvin. Chemical synthesis of carnitine and coenzyme A esters of the b-substituted intermediates of hexadecanoic acid metabolism. Biochimica et Biophysica Acta, Lipids and Lipid Metabolism (1971), 248(3), 416-29.
Material Safety Data Sheet (MSDS)Not Available
General References
  1. Hinsch W, Klages C, Seubert W: On the mechanism of malonyl-CoA-independent fatty-acid synthesis. Different properties of the mitochondrial chain elongation and enoylCoA reductase in various tissues. Eur J Biochem. 1976 Apr 15;64(1):45-55. Pubmed: 1278159

Only showing the first 50 proteins. There are 115 proteins in total.

Enzymes

General function:
Involved in transferase activity, transferring acyl groups other than amino-acyl groups
Specific function:
Abolishes BNIP3-mediated apoptosis and mitochondrial damage.
Gene Name:
ACAA2
Uniprot ID:
P42765
Molecular weight:
41923.82
General function:
Involved in transferase activity, transferring acyl groups other than amino-acyl groups
Specific function:
Not Available
Gene Name:
ACAA1
Uniprot ID:
P09110
Molecular weight:
34664.46
General function:
Involved in transferase activity, transferring acyl groups other than amino-acyl groups
Specific function:
Not Available
Gene Name:
HADHB
Uniprot ID:
P55084
Molecular weight:
51293.955
General function:
Involved in oxidoreductase activity
Specific function:
Plays a role in valine and pyrimidine metabolism. Binds fatty acyl-CoA.
Gene Name:
ALDH6A1
Uniprot ID:
Q02252
Molecular weight:
57839.31
General function:
Involved in acyl-CoA dehydrogenase activity
Specific function:
Not Available
Gene Name:
ACADL
Uniprot ID:
P28330
Molecular weight:
47655.275
Reactions
hexadecanoyl-CoA + FAD → (2E)-Hexadecenoyl-CoA + FADHdetails
General function:
Involved in acyl-CoA dehydrogenase activity
Specific function:
Not Available
Gene Name:
ACADS
Uniprot ID:
P16219
Molecular weight:
44296.705
General function:
Involved in acyl-CoA dehydrogenase activity
Specific function:
This enzyme is specific for acyl chain lengths of 4 to 16.
Gene Name:
ACADM
Uniprot ID:
P11310
Molecular weight:
46587.98
Reactions
hexadecanoyl-CoA + FAD → (2E)-Hexadecenoyl-CoA + FADHdetails
General function:
Involved in acyl-CoA dehydrogenase activity
Specific function:
Catalyzes the desaturation of acyl-CoAs to 2-trans-enoyl-CoAs. Isoform 1 shows highest activity against medium-chain fatty acyl-CoAs and activity decreases with increasing chain length. Isoform 2 is active against a much broader range of substrates and shows activity towards very long-chain acyl-CoAs. Isoform 2 is twice as active as isoform 1 against 16-hydroxy-palmitoyl-CoA and is 25% more active against 1,16-hexadecanodioyl-CoA.
Gene Name:
ACOX1
Uniprot ID:
Q15067
Molecular weight:
70135.205
Reactions
hexadecanoyl-CoA + FAD → (2E)-Hexadecenoyl-CoA + FADHdetails
General function:
Involved in acyl-CoA dehydrogenase activity
Specific function:
Oxidizes the CoA esters of the bile acid intermediates di- and tri-hydroxycholestanoic acids.
Gene Name:
ACOX2
Uniprot ID:
Q99424
Molecular weight:
76826.14
General function:
Involved in acyl-CoA dehydrogenase activity
Specific function:
Not Available
Gene Name:
IVD
Uniprot ID:
P26440
Molecular weight:
43055.325
General function:
Involved in oxidoreductase activity, acting on the CH-CH group of donors
Specific function:
Oxidizes the CoA-esters of 2-methyl-branched fatty acids (By similarity).
Gene Name:
ACOX3
Uniprot ID:
O15254
Molecular weight:
69574.075
Reactions
hexadecanoyl-CoA + FAD → (2E)-Hexadecenoyl-CoA + FADHdetails
General function:
Involved in acyl-CoA dehydrogenase activity
Specific function:
Catalyzes the oxidative decarboxylation of glutaryl-CoA to crotonyl-CoA and CO(2) in the degradative pathway of L-lysine, L-hydroxylysine, and L-tryptophan metabolism. It uses electron transfer flavoprotein as its electron acceptor. Isoform Short is inactive.
Gene Name:
GCDH
Uniprot ID:
Q92947
Molecular weight:
48126.715
General function:
Involved in catalytic activity
Specific function:
Hepatic lipase has the capacity to catalyze hydrolysis of phospholipids, mono-, di-, and triglycerides, and acyl-CoA thioesters. It is an important enzyme in HDL metabolism. Hepatic lipase binds heparin.
Gene Name:
LIPC
Uniprot ID:
P11150
Molecular weight:
55914.1
General function:
Involved in diacylglycerol O-acyltransferase activity
Specific function:
Catalyzes the terminal and only committed step in triacylglycerol synthesis by using diacylglycerol and fatty acyl CoA as substrates. In contrast to DGAT2 it is not essential for survival. May be involved in VLDL (very low density lipoprotein) assembly. In liver, plays a role in esterifying exogenous fatty acids to glycerol. Functions as the major acyl-CoA retinol acyltransferase (ARAT) in the skin, where it acts to maintain retinoid homeostasis and prevent retinoid toxicity leading to skin and hair disorders.
Gene Name:
DGAT1
Uniprot ID:
O75907
Molecular weight:
55277.735
General function:
Involved in catalytic activity
Specific function:
The branched-chain alpha-keto dehydrogenase complex catalyzes the overall conversion of alpha-keto acids to acyl-CoA and CO(2). It contains multiple copies of three enzymatic components: branched-chain alpha-keto acid decarboxylase (E1), lipoamide acyltransferase (E2) and lipoamide dehydrogenase (E3).
Gene Name:
BCKDHB
Uniprot ID:
P21953
Molecular weight:
43122.065
General function:
Involved in oxidoreductase activity, acting on the aldehyde or oxo group of donors, disulfide as acceptor
Specific function:
The branched-chain alpha-keto dehydrogenase complex catalyzes the overall conversion of alpha-keto acids to acyl-CoA and CO(2). It contains multiple copies of three enzymatic components: branched-chain alpha-keto acid decarboxylase (E1), lipoamide acyltransferase (E2) and lipoamide dehydrogenase (E3).
Gene Name:
BCKDHA
Uniprot ID:
P12694
Molecular weight:
50470.58
General function:
Involved in oxidoreductase activity
Specific function:
Terminal component of the liver microsomal stearyl-CoA desaturase system, that utilizes O(2) and electrons from reduced cytochrome b5 to catalyze the insertion of a double bond into a spectrum of fatty acyl-CoA substrates including palmitoyl-CoA and stearoyl-CoA.
Gene Name:
SCD
Uniprot ID:
O00767
Molecular weight:
41522.28
General function:
Involved in oxidoreductase activity
Specific function:
Not Available
Gene Name:
EHHADH
Uniprot ID:
Q08426
Molecular weight:
69153.26
Reactions
(S)-3-Hydroxyhexadecanoyl-CoA → (2E)-Hexadecenoyl-CoA + Waterdetails
General function:
Involved in catalytic activity
Specific function:
Straight-chain enoyl-CoA thioesters from C4 up to at least C16 are processed, although with decreasing catalytic rate.
Gene Name:
ECHS1
Uniprot ID:
P30084
Molecular weight:
31387.085
Reactions
(S)-3-Hydroxyhexadecanoyl-CoA → (2E)-Hexadecenoyl-CoA + Waterdetails
General function:
Involved in oxidoreductase activity
Specific function:
Bifunctional subunit.
Gene Name:
HADHA
Uniprot ID:
P40939
Molecular weight:
82998.97
Reactions
(S)-3-Hydroxyhexadecanoyl-CoA → (2E)-Hexadecenoyl-CoA + Waterdetails
General function:
Involved in acyl-CoA binding
Specific function:
Plays a role in lipoprotein assembly and dietary cholesterol absorption. In addition to its acyltransferase activity, it may act as a ligase. May provide cholesteryl esters for lipoprotein secretion from hepatocytes and intestinal mucosa.
Gene Name:
SOAT2
Uniprot ID:
O75908
Molecular weight:
59895.735
General function:
Involved in acyl-CoA binding
Specific function:
Catalyzes the formation of fatty acid-cholesterol esters. Plays a role in lipoprotein assembly and dietary cholesterol absorption. In addition to its acyltransferase activity, it may act as a ligase.
Gene Name:
SOAT1
Uniprot ID:
P35610
Molecular weight:
58130.665
General function:
Involved in thiolester hydrolase activity
Specific function:
Involved in bile acid metabolism. In liver hepatocytes catalyzes the second step in the conjugation of C24 bile acids (choloneates) to glycine and taurine before excretion into bile canaliculi. The major components of bile are cholic acid and chenodeoxycholic acid. In a first step the bile acids are converted to an acyl-CoA thioester, either in peroxisomes (primary bile acids deriving from the cholesterol pathway), or cytoplasmic at the endoplasmic reticulum (secondary bile acids). May catalyze the conjugation of primary or secondary bile acids, or both. The conjugation increases the detergent properties of bile acids in the intestine, which facilitates lipid and fat-soluble vitamin absorption. In turn, bile acids are deconjugated by bacteria in the intestine and are recycled back to the liver for reconjugation (secondary bile acids). May also act as an acyl-CoA thioesterase that regulates intracellular levels of free fatty acids. In vitro, catalyzes the hydrolysis of long- and very long-chain saturated acyl-CoAs to the free fatty acid and coenzyme A (CoASH), and conjugates glycine to these acyl-CoAs.
Gene Name:
BAAT
Uniprot ID:
Q14032
Molecular weight:
46298.865
General function:
Involved in catalytic activity
Specific function:
Activation of long-chain fatty acids for both synthesis of cellular lipids, and degradation via beta-oxidation. Preferentially uses arachidonate and eicosapentaenoate as substrates.
Gene Name:
ACSL4
Uniprot ID:
O60488
Molecular weight:
74435.495
General function:
Involved in catalytic activity
Specific function:
Activation of long-chain fatty acids for both synthesis of cellular lipids, and degradation via beta-oxidation. Preferentially uses palmitoleate, oleate and linoleate.
Gene Name:
ACSL1
Uniprot ID:
P33121
Molecular weight:
77942.685
General function:
Involved in catalytic activity
Specific function:
Activation of long-chain fatty acids for both synthesis of cellular lipids, and degradation via beta-oxidation. Plays an important role in fatty acid metabolism in brain and the acyl-CoAs produced may be utilized exclusively for the synthesis of the brain lipid.
Gene Name:
ACSL6
Uniprot ID:
Q9UKU0
Molecular weight:
80609.765
General function:
Involved in catalytic activity
Specific function:
Acyl-CoA synthetases (ACSL) activate long-chain fatty acids for both synthesis of cellular lipids, and degradation via beta-oxidation. ACSL5 may activate fatty acids from exogenous sources for the synthesis of triacylglycerol destined for intracellular storage (By similarity). Utilizes a wide range of saturated fatty acids with a preference for C16-C18 unsaturated fatty acids (By similarity). It was suggested that it may also stimulate fatty acid oxidation (By similarity). At the villus tip of the crypt-villus axis of the small intestine may sensitize epithelial cells to apoptosis specifically triggered by the death ligand TRAIL. May have a role in the survival of glioma cells.
Gene Name:
ACSL5
Uniprot ID:
Q9ULC5
Molecular weight:
82262.19
General function:
Involved in catalytic activity
Specific function:
Acyl-CoA synthetases (ACSL) activates long-chain fatty acids for both synthesis of cellular lipids, and degradation via beta-oxidation. ACSL3 mediates hepatic lipogenesis (By similarity). Preferentially uses myristate, laurate, arachidonate and eicosapentaenoate as substrates (By similarity). Has mainly an anabolic role in energy metabolism. Required for the incorporation of fatty acids into phosphatidylcholine, the major phospholipid located on the surface of VLDL (very low density lipoproteins).
Gene Name:
ACSL3
Uniprot ID:
O95573
Molecular weight:
80419.415
General function:
Involved in acyltransferase activity
Specific function:
Esterifies acyl-group from acyl-ACP to the sn-1 position of glycerol-3-phosphate, an essential step in glycerolipid biosynthesis.
Gene Name:
GPAM
Uniprot ID:
Q9HCL2
Molecular weight:
93793.895
General function:
Involved in zinc ion binding
Specific function:
Catalyzes the reduction of trans-2-enoyl-CoA to acyl-CoA with chain length from C6 to C16 in an NADPH-dependent manner with preference to medium chain length substrate. May have a role in the mitochondrial synthesis of fatty acids.
Gene Name:
MECR
Uniprot ID:
Q9BV79
Molecular weight:
32228.0
Reactions
hexadecanoyl-CoA + NADP → (2E)-Hexadecenoyl-CoA + NADPH + Hydrogen Iondetails
General function:
Involved in regulation of apoptosis
Specific function:
Participates in chain elongation of fatty acids. Has no 2,4-dienoyl-CoA reductase activity.
Gene Name:
PECR
Uniprot ID:
Q9BY49
Molecular weight:
32544.11
General function:
Lipid transport and metabolism
Specific function:
Acyl-CoA thioesterases are a group of enzymes that catalyze the hydrolysis of acyl-CoAs to the free fatty acid and coenzyme A (CoASH), providing the potential to regulate intracellular levels of acyl-CoAs, free fatty acids and CoASH. May play an important physiological function in brain. May play a regulatory role by modulating the cellular levels of fatty acyl-CoA ligands for certain transcription factors as well as the substrates for fatty acid metabolizing enzymes, contributing to lipid homeostasis. Has broad specificity, active towards fatty acyl-CoAs with chain-lengths of C8-C18. Has a maximal activity toward palmitoyl-CoA.
Gene Name:
ACOT7
Uniprot ID:
O00154
Molecular weight:
40454.945
General function:
Involved in thiolester hydrolase activity
Specific function:
Acyl-CoA thioesterases are a group of enzymes that catalyze the hydrolysis of acyl-CoAs to the free fatty acid and coenzyme A (CoASH), providing the potential to regulate intracellular levels of acyl-CoAs, free fatty acids and CoASH. Displays high levels of activity on medium- and long chain acyl CoAs.
Gene Name:
ACOT2
Uniprot ID:
P49753
Molecular weight:
53218.02
General function:
Involved in thiolester hydrolase activity
Specific function:
Acyl-CoA thioesterases are a group of enzymes that catalyze the hydrolysis of acyl-CoAs to the free fatty acid and coenzyme A (CoASH), providing the potential to regulate intracellular levels of acyl-CoAs, free fatty acids and CoASH (By similarity). Succinyl-CoA thioesterase that also hydrolyzes long chain saturated and unsaturated monocarboxylic acyl-CoAs.
Gene Name:
ACOT4
Uniprot ID:
Q8N9L9
Molecular weight:
46326.09
General function:
Involved in acyl-CoA thioesterase activity
Specific function:
Acyl-CoA thioesterases are a group of enzymes that catalyze the hydrolysis of acyl-CoAs to the free fatty acid and coenzyme A (CoASH), providing the potential to regulate intracellular levels of acyl-CoAs, free fatty acids and CoASH. May mediate Nef-induced down-regulation of CD4. Major thioesterase in peroxisomes. Competes with BAAT (Bile acid CoA: amino acid N-acyltransferase) for bile acid-CoA substrate (such as chenodeoxycholoyl-CoA). Shows a preference for medium-length fatty acyl-CoAs (By similarity). May be involved in the metabolic regulation of peroxisome proliferation.
Gene Name:
ACOT8
Uniprot ID:
O14734
Molecular weight:
35914.02
General function:
Lipid transport and metabolism
Specific function:
Not Available
Gene Name:
GNPAT
Uniprot ID:
O15228
Molecular weight:
77187.185
General function:
Involved in acyltransferase activity
Specific function:
Converts lysophosphatidic acid (LPA) into phosphatidic acid by incorporating an acyl moiety at the sn-2 position of the glycerol backbone. Acts on LPA containing saturated or unsaturated fatty acids C16:0-C20:4 at the sn-1 position using C18:1, C20:4 or C18:2-CoA as the acyl donor. Also acts on lysophosphatidylcholine, lysophosphatidylinositol and lysophosphatidylserine using C18:1 or C20:4-CoA.
Gene Name:
AGPAT3
Uniprot ID:
Q9NRZ7
Molecular weight:
43380.605
General function:
Lipid transport and metabolism
Specific function:
Converts lysophosphatidic acid (LPA) into phosphatidic acid by incorporating an acyl moiety at the sn-2 position of the glycerol backbone.
Gene Name:
AGPAT2
Uniprot ID:
O15120
Molecular weight:
27278.915
General function:
Involved in acyltransferase activity
Specific function:
Converts lysophosphatidic acid (LPA) into phosphatidic acid by incorporating an acyl moiety at the sn-2 position of the glycerol backbone.
Gene Name:
AGPAT1
Uniprot ID:
Q99943
Molecular weight:
31716.27
General function:
Involved in acyl-CoA dehydrogenase activity
Specific function:
Has greatest activity toward short branched chain acyl-CoA derivative such as (s)-2-methylbutyryl-CoA, isobutyryl-CoA, and 2-methylhexanoyl-CoA as well as toward short straight chain acyl-CoAs such as butyryl-CoA and hexanoyl-CoA. Can use valproyl-CoA as substrate and may play a role in controlling the metabolic flux of valproic acid in the development of toxicity of this agent.
Gene Name:
ACADSB
Uniprot ID:
P45954
Molecular weight:
47485.035
General function:
Involved in catalytic activity
Specific function:
Acyl-CoA synthetase probably involved in bile acid metabolism. Proposed to activate C27 precurors of bile acids to their CoA thioesters derivatives before side chain cleavage via peroxisomal beta-oxidation occurs. In vitro, activates 3-alpha,7-alpha,12-alpha-trihydroxy-5-beta-cholestanate (THCA), the C27 precursor of cholic acid deriving from the de novo synthesis from cholesterol. Does not utilize C24 bile acids as substrates. In vitro, also activates long- and branched-chain fatty acids and may have additional roles in fatty acid metabolism. May be involved in translocation of long-chain fatty acids (LFCA) across membranes (By similarity).
Gene Name:
SLC27A2
Uniprot ID:
O14975
Molecular weight:
64614.99
General function:
Involved in DNA binding
Specific function:
Receptor that binds peroxisome proliferators such as hypolipidemic drugs and fatty acids. Once activated by a ligand, the receptor binds to a promoter element in the gene for acyl-CoA oxidase and activates its transcription. It therefore controls the peroxisomal beta-oxidation pathway of fatty acids. Key regulator of adipocyte differentiation and glucose homeostasis
Gene Name:
PPARG
Uniprot ID:
P37231
Molecular weight:
57619.6
General function:
Involved in DNA binding
Specific function:
Ligand-activated transcription factor. Key regulator of lipid metabolism. Activated by the endogenous ligand 1-palmitoyl- 2-oleoyl-sn-glycerol-3-phosphocholine (16:0/18:1-GPC). Activated by oleylethanolamide, a naturally occurring lipid that regulates satiety. Receptor for peroxisome proliferators such as hypolipidemic drugs and fatty acids. Once activated by a ligand, the receptor binds to promoter elements of target genes. Regulates the peroxisomal beta-oxidation pathway of fatty acids. Functions as transcription activator for the acyl-CoA oxidase gene
Gene Name:
PPARA
Uniprot ID:
Q07869
Molecular weight:
52224.6
General function:
Involved in DNA binding
Specific function:
Ligand-activated transcription factor. Receptor that binds peroxisome proliferators such as hypolipidemic drugs and fatty acids. Has a preference for poly-unsaturated fatty acids, such as gamma-linoleic acid and eicosapentanoic acid. Once activated by a ligand, the receptor binds to promoter elements of target genes. Regulates the peroxisomal beta-oxidation pathway of fatty acids. Functions as transcription activator for the acyl-CoA oxidase gene. Decreases expression of NPC1L1 once activated by a ligand
Gene Name:
PPARD
Uniprot ID:
Q03181
Molecular weight:
49903.0
General function:
Involved in acyl-CoA binding
Specific function:
Binds medium- and long-chain acyl-CoA esters with very high affinity and may function as an intracellular carrier of acyl-CoA esters. It is also able to displace diazepam from the benzodiazepine (BZD) recognition site located on the GABA type A receptor. It is therefore possible that this protein also acts as a neuropeptide to modulate the action of the GABA receptor
Gene Name:
DBI
Uniprot ID:
P07108
Molecular weight:
10044.4
General function:
Involved in negative regulation of cell proliferation
Specific function:
FABP are thought to play a role in the intracellular transport of long-chain fatty acids and their acyl-CoA esters
Gene Name:
FABP3
Uniprot ID:
P05413
Molecular weight:
14857.9
General function:
Involved in acyltransferase activity
Specific function:
Converts lysophosphatidic acid (LPA) into phosphatidic acid by incorporating an acyl moiety at the sn-2 position of the glycerol backbone. Acts on LPA containing saturated or unsaturated fatty acids C15:0-C20:4 at the sn-1 position using C18:1-CoA as the acyl donor. Also acts on lysophosphatidylethanolamine using oleoyl-CoA, but not arachidonoyl-CoA, and lysophosphatidylinositol using arachidonoyl-CoA, but not oleoyl-CoA. Activity toward lysophosphatidylglycerol not detectable.
Gene Name:
AGPAT5
Uniprot ID:
Q9NUQ2
Molecular weight:
42071.835
General function:
Involved in catalytic activity
Specific function:
Acyl-CoA synthetase involved in bile acid metabolism. Proposed to catalyze the first step in the conjugation of C24 bile acids (choloneates) to glycine and taurine before excretion into bile canaliculi by activating them to their CoA thioesters. Seems to activate secondary bile acids entering the liver from the enterohepatic circulation. In vitro, also activates 3-alpha,7-alpha,12-alpha-trihydroxy-5-beta-cholestanate (THCA), the C27 precursor of cholic acid deriving from the de novo synthesis from cholesterol.
Gene Name:
SLC27A5
Uniprot ID:
Q9Y2P5
Molecular weight:
75384.375
General function:
Involved in acyltransferase activity
Specific function:
The branched-chain alpha-keto dehydrogenase complex catalyzes the overall conversion of alpha-keto acids to acyl-CoA and CO(2). It contains multiple copies of three enzymatic components: branched-chain alpha-keto acid decarboxylase (E1), lipoamide acyltransferase (E2) and lipoamide dehydrogenase (E3).
Gene Name:
DBT
Uniprot ID:
P11182
Molecular weight:
53486.635
General function:
Involved in transferase activity, transferring acyl groups other than amino-acyl groups
Specific function:
Catalyzes the formation of diacylglycerol from 2-monoacylglycerol and fatty acyl-CoA. Has a preference toward monoacylglycerols containing unsaturated fatty acids in an order of C18:3 > C18:2 > C18:1 > C18:0. Plays a central role in absorption of dietary fat in the small intestine by catalyzing the resynthesis of triacylglycerol in enterocytes. May play a role in diet-induced obesity.
Gene Name:
MOGAT2
Uniprot ID:
Q3SYC2
Molecular weight:
38195.285

Transporters

General function:
Lipid transport and metabolism
Specific function:
Involved in translocation of long-chain fatty acids (LFCA) across the plasma membrane. The LFCA import appears to be hormone-regulated in a tissue-specific manner. In adipocytes, but not myocytes, insulin induces a rapid translocation of FATP1 from intracellular compartments to the plasma membrane, paralleled by increased LFCA uptake. May act directly as a bona fide transporter, or alternatively, in a cytoplasmic or membrane- associated multimeric protein complex to trap and draw fatty acids towards accumulation. Plays a pivotal role in regulating available LFCA substrates from exogenous sources in tissues undergoing high levels of beta-oxidation or triglyceride synthesis. May be involved in regulation of cholesterol metabolism. Has acyl-CoA ligase activity for long-chain and very-long-chain fatty acids
Gene Name:
SLC27A1
Uniprot ID:
Q6PCB7
Molecular weight:
71107.5

Only showing the first 50 proteins. There are 115 proteins in total.