You are using an unsupported browser. Please upgrade your browser to a newer version to get the best experience on Human Metabolome Database.
Record Information
StatusExpected but not Quantified
Creation Date2006-08-13 07:55:12 UTC
Update Date2017-12-20 20:29:51 UTC
Secondary Accession Numbers
  • HMDB03949
Metabolite Identification
Common Name(2E)-Octenoyl-CoA
Description(2E)-Octenoyl-CoA is the main metabolite produced in medium-chain acyl-CoA dehydrogenase (EC, MCAD) deficiency; however the product of the enzymatic reaction is not directly detected in several methods for screening of inborn errors of fatty acid oxidation. In order to aid the timely follow-up of screening results that suggest abnormalities in MCAD, rapid and simple confirmatory tests for the enzyme activity and/or gene mutation analysis should be available. Medium-chain fatty acyl-CoA dehydrogenase (MCAD) catalyzes the conversion of different chain length fatty acyl- CoAs into their corresponding trans-enoyl-CoA moieties via two consecutive sequences of steps. The first step involves the concerted abstraction of a proton and a hydride ion from the a- and 8-carbon chains of the fatty acyl-CoA substrates, concomitant with the reduction of the enzyme (E)-bound FAD to FADH2. The reoxidation of EFADH2, to propagate further rounds of catalysis, is accomplished via transfer of electrons to a variety of organic electron acceptors; the natural electron acceptor for this process, under physiological conditions, is the electron-transferring flavoprotein. Of the different chain length fatty acyl-CoA substrates, octanoyl-CoA/octenoyl-CoA have been known as the most efficient (and physiological) substrates for the medium-chain fatty acyl-CoA dehydrogenase (MCAD)-catalyzed reaction. (PMID: 16046200 , 1390638 , 8038175 ).
(e)-S-2-Octenoate CoAHMDB
(e)-S-2-Octenoate coenzyme AHMDB
(e)-S-2-Octenoic acidHMDB
2,3-trans-Octenoyl coenzyme AHMDB
Oct-2-trans-enoyl-coenzyme AHMDB
Oct-trans-2-enoyl coenzyme AHMDB
S-(2E)-2-Octenoate CoAHMDB
S-(2E)-2-Octenoate coenzyme AHMDB
S-(2E)-2-Octenoic acidHMDB
trans-D2,3-Octenoyl-coenzyme AHMDB
trans-Oct-2-enoyl-coenzyme AHMDB
Chemical FormulaC29H48N7O17P3S
Average Molecular Weight891.714
Monoisotopic Molecular Weight891.204023371
IUPAC Name{[(2R,3S,4R,5R)-5-(6-amino-9H-purin-9-yl)-4-hydroxy-2-({[hydroxy({[hydroxy(3-hydroxy-2,2-dimethyl-3-{[2-({2-[(2E)-oct-2-enoylsulfanyl]ethyl}carbamoyl)ethyl]carbamoyl}propoxy)phosphoryl]oxy})phosphoryl]oxy}methyl)oxolan-3-yl]oxy}phosphonic acid
Traditional Name[(2R,3S,4R,5R)-5-(6-aminopurin-9-yl)-4-hydroxy-2-[({hydroxy[hydroxy(3-hydroxy-2,2-dimethyl-3-{[2-({2-[(2E)-oct-2-enoylsulfanyl]ethyl}carbamoyl)ethyl]carbamoyl}propoxy)phosphoryl]oxyphosphoryl}oxy)methyl]oxolan-3-yl]oxyphosphonic acid
CAS Registry Number10018-94-7
InChI Identifier
Chemical Taxonomy
DescriptionThis compound belongs to the class of organic compounds known as medium-chain 2-enoyl coas. These are organic compounds containing a coenzyme A substructure linked to a medium-chain 2-enoyl chain of 5 to 12 carbon atoms.
KingdomOrganic compounds
Super ClassLipids and lipid-like molecules
ClassFatty Acyls
Sub ClassFatty acyl thioesters
Direct ParentMedium-chain 2-enoyl CoAs
Alternative Parents
  • Coenzyme a or derivatives
  • Purine ribonucleoside 3',5'-bisphosphate
  • Purine ribonucleoside bisphosphate
  • Purine ribonucleoside diphosphate
  • Ribonucleoside 3'-phosphate
  • Pentose phosphate
  • Pentose-5-phosphate
  • Beta amino acid or derivatives
  • Glycosyl compound
  • N-glycosyl compound
  • 6-aminopurine
  • Monosaccharide phosphate
  • Organic pyrophosphate
  • Pentose monosaccharide
  • Imidazopyrimidine
  • Purine
  • Monoalkyl phosphate
  • Aminopyrimidine
  • Imidolactam
  • N-acyl-amine
  • N-substituted imidazole
  • Organic phosphoric acid derivative
  • Monosaccharide
  • Pyrimidine
  • Alkyl phosphate
  • Fatty amide
  • Phosphoric acid ester
  • Tetrahydrofuran
  • Imidazole
  • Azole
  • Heteroaromatic compound
  • Carbothioic s-ester
  • Secondary alcohol
  • Thiocarboxylic acid ester
  • Carboxamide group
  • Secondary carboxylic acid amide
  • Amino acid or derivatives
  • Sulfenyl compound
  • Thiocarboxylic acid or derivatives
  • Organoheterocyclic compound
  • Azacycle
  • Oxacycle
  • Carboxylic acid derivative
  • Organosulfur compound
  • Organic oxygen compound
  • Hydrocarbon derivative
  • Carbonyl group
  • Organic nitrogen compound
  • Primary amine
  • Organopnictogen compound
  • Organic oxide
  • Organooxygen compound
  • Organonitrogen compound
  • Alcohol
  • Amine
  • Aromatic heteropolycyclic compound
Molecular FrameworkAromatic heteropolycyclic compounds
External Descriptors

Biological location:

  Cell and elements:



Route of exposure:




  Biofluid and excreta:


Naturally occurring process:

  Biological process:

    Biochemical pathway:

    Cellular process:

    Biochemical process:

    Chemical reaction:


Industrial application:

Biological role:

Physical Properties
Experimental Properties
Melting PointNot AvailableNot Available
Boiling PointNot AvailableNot Available
Water SolubilityNot AvailableNot Available
LogP-1.281Not Available
Predicted Properties
Water Solubility3.13 g/LALOGPS
pKa (Strongest Acidic)0.83ChemAxon
pKa (Strongest Basic)4.95ChemAxon
Physiological Charge-4ChemAxon
Hydrogen Acceptor Count17ChemAxon
Hydrogen Donor Count9ChemAxon
Polar Surface Area363.63 ŲChemAxon
Rotatable Bond Count25ChemAxon
Refractivity200.93 m³·mol⁻¹ChemAxon
Polarizability81.26 ųChemAxon
Number of Rings3ChemAxon
Rule of FiveYesChemAxon
Ghose FilterYesChemAxon
Veber's RuleYesChemAxon
MDDR-like RuleYesChemAxon
Spectrum TypeDescriptionSplash Key
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 10V, Positivesplash10-000i-1912000120-6a4c400b3152685ddc42View in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 20V, Positivesplash10-000i-0933000000-6bfba9e629e0c41c1c83View in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 40V, Positivesplash10-000i-1911000000-7bd78cc2705414ac12aaView in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 10V, Negativesplash10-00gl-3911030340-0a6b8d53ed19f026db3fView in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 20V, Negativesplash10-00ai-3910010010-8cc155429b1ae945edc0View in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 40V, Negativesplash10-057i-6900000000-8852cd72aadbe50cd70bView in MoNA
Biological Properties
Cellular Locations
  • Extracellular
  • Membrane
Biofluid LocationsNot Available
Tissue LocationNot Available
Carnitine palmitoyl transferase deficiency (I)ThumbThumb?image type=greyscaleThumb?image type=simpleNot Available
Carnitine palmitoyl transferase deficiency (II)ThumbThumb?image type=greyscaleThumb?image type=simpleNot Available
Ethylmalonic EncephalopathyThumbThumb?image type=greyscaleThumb?image type=simpleNot Available
Fatty Acid Elongation In MitochondriaThumbThumb?image type=greyscaleThumb?image type=simpleMap00062
Fatty acid MetabolismThumbThumb?image type=greyscaleThumb?image type=simpleMap00071
Normal Concentrations
Not Available
Abnormal Concentrations
Not Available
Associated Disorders and Diseases
Disease ReferencesNone
Associated OMIM IDsNone
DrugBank IDNot Available
Phenol Explorer Compound IDNot Available
FoodDB IDFDB023268
KNApSAcK IDNot Available
Chemspider ID4444335
KEGG Compound IDC05276
BioCyc IDNot Available
BiGG IDNot Available
Wikipedia LinkNot Available
METLIN IDNot Available
PubChem Compound5280769
PDB IDNot Available
ChEBI ID27537
Synthesis ReferenceReiser, S. E.; Gruys, K. J.; Mitsky, T. A. Characterization and cloning of an (R)-specific trans-2,3-enoylacyl-CoA hydratase from Rhodospirillum rubrum and use of this enzyme for PHA production in Escherichia coli. Applied Microbiology and Biotechnology (2000), 53(2), 209-218.
Material Safety Data Sheet (MSDS)Not Available
General References
  1. Tajima G, Sakura N, Yofune H, Nishimura Y, Ono H, Hasegawa Y, Hata I, Kimura M, Yamaguchi S, Shigematsu Y, Kobayashi M: Enzymatic diagnosis of medium-chain acyl-CoA dehydrogenase deficiency by detecting 2-octenoyl-CoA production using high-performance liquid chromatography: a practical confirmatory test for tandem mass spectrometry newborn screening in Japan. J Chromatogr B Analyt Technol Biomed Life Sci. 2005 Sep 5;823(2):122-30. [PubMed:16046200 ]
  2. Cummings JG, Lau SM, Powell PJ, Thorpe C: Reductive half-reaction in medium-chain acyl-CoA dehydrogenase: modulation of internal equilibrium by carboxymethylation of a specific methionine residue. Biochemistry. 1992 Sep 15;31(36):8523-9. [PubMed:1390638 ]
  3. Kumar NR, Srivastava DK: Reductive half-reaction of medium-chain fatty acyl-CoA dehydrogenase utilizing octanoyl-CoA/octenoyl-CoA as a physiological substrate/product pair: similarity in the microscopic pathways of octanoyl-CoA oxidation and octenoyl-CoA binding. Biochemistry. 1994 Jul 26;33(29):8833-41. [PubMed:8038175 ]

Only showing the first 10 proteins. There are 114 proteins in total.


General function:
Involved in catalytic activity
Specific function:
Straight-chain enoyl-CoA thioesters from C4 up to at least C16 are processed, although with decreasing catalytic rate.
Gene Name:
Uniprot ID:
Molecular weight:
(S)-Hydroxyoctanoyl-CoA → (2E)-Octenoyl-CoA + Waterdetails
General function:
Involved in acyl-CoA dehydrogenase activity
Specific function:
Catalyzes the desaturation of acyl-CoAs to 2-trans-enoyl-CoAs. Isoform 1 shows highest activity against medium-chain fatty acyl-CoAs and activity decreases with increasing chain length. Isoform 2 is active against a much broader range of substrates and shows activity towards very long-chain acyl-CoAs. Isoform 2 is twice as active as isoform 1 against 16-hydroxy-palmitoyl-CoA and is 25% more active against 1,16-hexadecanodioyl-CoA.
Gene Name:
Uniprot ID:
Molecular weight:
Octanoyl-CoA + FAD → (2E)-Octenoyl-CoA + FADHdetails
General function:
Involved in acyl-CoA dehydrogenase activity
Specific function:
This enzyme is specific for acyl chain lengths of 4 to 16.
Gene Name:
Uniprot ID:
Molecular weight:
Octanoyl-CoA + FAD → (2E)-Octenoyl-CoA + FADHdetails
General function:
Involved in regulation of apoptosis
Specific function:
Participates in chain elongation of fatty acids. Has no 2,4-dienoyl-CoA reductase activity.
Gene Name:
Uniprot ID:
Molecular weight:
General function:
Involved in oxidoreductase activity, acting on the CH-CH group of donors
Specific function:
Oxidizes the CoA-esters of 2-methyl-branched fatty acids (By similarity).
Gene Name:
Uniprot ID:
Molecular weight:
Octanoyl-CoA + FAD → (2E)-Octenoyl-CoA + FADHdetails
General function:
Involved in catalytic activity
Specific function:
Activation of long-chain fatty acids for both synthesis of cellular lipids, and degradation via beta-oxidation. Plays an important role in fatty acid metabolism in brain and the acyl-CoAs produced may be utilized exclusively for the synthesis of the brain lipid.
Gene Name:
Uniprot ID:
Molecular weight:
General function:
Involved in acyl-CoA dehydrogenase activity
Specific function:
Oxidizes the CoA esters of the bile acid intermediates di- and tri-hydroxycholestanoic acids.
Gene Name:
Uniprot ID:
Molecular weight:
General function:
Involved in acyl-CoA binding
Specific function:
Not Available
Gene Name:
Not Available
Uniprot ID:
Molecular weight:
General function:
Involved in catalytic activity
Specific function:
Has medium-chain fatty acid:CoA ligase activity with broad substrate specificity (in vitro). Acts on acids from C(4) to C(11) and on the corresponding 3-hydroxy- and 2,3- or 3,4-unsaturated acids (in vitro) (By similarity).
Gene Name:
Uniprot ID:
Molecular weight:
General function:
Involved in acyltransferase activity
Specific function:
Possesses both acyltransferase and acetyltransferase activities. Activity is calcium-independent. Mediates the conversion of 1-acyl-sn-glycero-3-phosphocholine (LPC) into phosphatidylcholine (PC). Displays a clear preference for saturated fatty acyl-CoAs, and 1-myristoyl or 1-palmitoyl LPC as acyl donors and acceptors, respectively. May synthesize phosphatidylcholine in pulmonary surfactant, thereby playing a pivotal role in respiratory physiology.
Gene Name:
Uniprot ID:
Molecular weight:


General function:
Lipid transport and metabolism
Specific function:
Involved in translocation of long-chain fatty acids (LFCA) across the plasma membrane. The LFCA import appears to be hormone-regulated in a tissue-specific manner. In adipocytes, but not myocytes, insulin induces a rapid translocation of FATP1 from intracellular compartments to the plasma membrane, paralleled by increased LFCA uptake. May act directly as a bona fide transporter, or alternatively, in a cytoplasmic or membrane- associated multimeric protein complex to trap and draw fatty acids towards accumulation. Plays a pivotal role in regulating available LFCA substrates from exogenous sources in tissues undergoing high levels of beta-oxidation or triglyceride synthesis. May be involved in regulation of cholesterol metabolism. Has acyl-CoA ligase activity for long-chain and very-long-chain fatty acids
Gene Name:
Uniprot ID:
Molecular weight:

Only showing the first 10 proteins. There are 114 proteins in total.