You are using an unsupported browser. Please upgrade your browser to a newer version to get the best experience on Human Metabolome Database.
Record Information
Version4.0
StatusDetected and Quantified
Creation Date2009-02-19 23:38:53 UTC
Update Date2017-12-07 02:32:12 UTC
HMDB IDHMDB0011696
Secondary Accession Numbers
  • HMDB11696
Metabolite Identification
Common NameSM(d17:1/24:1(15Z))
DescriptionSphingomyelin SM(d17:1/24:1(15Z)) or SM(d17:1/24:1(15Z)) is a sphingomyelin. Sphingomyelin (SM or SPH) is a type of sphingolipid found in animal cell membranes, especially in the membranous myelin sheath which surrounds some nerve cell axons. It usually consists of phosphorylcholine and ceramide. In humans, sphingomyelin is the only membrane phospholipid not derived from glycerol. Like all sphingolipids, SPH has a ceramide core (sphingosine bonded to a fatty acid via an amide linkage). In addition it contains one polar head group, which is either phosphocholine or phosphoethanolamine. The plasma membrane of cells is highly enriched in sphingomyelin and is considered largely to be found in the exoplasmic leaflet of the cell membrane. However, there is some evidence that there may also be a sphingomyelin pool in the inner leaflet of the membrane. Moreover, neutral sphingomyelinase-2 - an enzyme that breaks down sphingomyelin into ceramide has been found to localise exclusively to the inner leaflet further suggesting that there may be sphingomyelin present there. Sphingomyelin can accumulate in a rare hereditary disease called Niemann-Pick Disease, types A and B. Niemann-Pick disease is a genetically-inherited disease caused by a deficiency in the enzyme Sphingomyelinase, which causes the accumulation of Sphingomyelin in spleen, liver, lungs, bone marrow, and the brain, causing irreversible neurological damage. SMs play a role in signal transduction. Sphingomyelins are synthesized by the transfer of phosphorylcholine from phosphatidylcholine to a ceramide in a reaction catalyzed by sphingomyelin synthase.
Structure
Thumb
Synonyms
ValueSource
SPH(D17:1/24:1(15Z))HMDB
Sphingomyelin (D17:1/24:1(15Z))HMDB
Chemical FormulaC46H92N2O6P
Average Molecular Weight800.2062
Monoisotopic Molecular Weight799.669300198
IUPAC Name{[(2S,3R,4E)-3-hydroxy-2-[(15Z)-tetracos-15-enamido]heptadec-4-en-1-yl]oxy}[2-(trimethylazaniumyl)ethoxy]phosphinic acid
Traditional Name[(2S,3R,4E)-3-hydroxy-2-[(15Z)-tetracos-15-enamido]heptadec-4-en-1-yl]oxy(2-(trimethylammonio)ethoxy)phosphinic acid
CAS Registry NumberNot Available
SMILES
CCCCCCCCCCCC\C=C\[C@@]([H])(O)[C@]([H])(COP(O)(=O)OCC[N+](C)(C)C)NC(=O)CCCCCCCCCCCCC\C=C/CCCCCCCC
InChI Identifier
InChI=1S/C46H91N2O6P/c1-6-8-10-12-14-16-18-20-21-22-23-24-25-26-27-28-30-32-34-36-38-40-46(50)47-44(43-54-55(51,52)53-42-41-48(3,4)5)45(49)39-37-35-33-31-29-19-17-15-13-11-9-7-2/h20-21,37,39,44-45,49H,6-19,22-36,38,40-43H2,1-5H3,(H-,47,50,51,52)/p+1/b21-20-,39-37+/t44-,45+/m0/s1
InChI KeyPOQOEIGODOXWFL-HIMVLHDZSA-O
Chemical Taxonomy
DescriptionThis compound belongs to the class of organic compounds known as phosphocholines. These are compounds containing a [2-(trimethylazaniumyl)ethoxy]phosphonic acid or derivative.
KingdomOrganic compounds
Super ClassOrganic nitrogen compounds
ClassOrganonitrogen compounds
Sub ClassQuaternary ammonium salts
Direct ParentPhosphocholines
Alternative Parents
Substituents
  • Phosphocholine
  • Phosphoethanolamine
  • Dialkyl phosphate
  • Fatty amide
  • N-acyl-amine
  • Organic phosphoric acid derivative
  • Phosphoric acid ester
  • Alkyl phosphate
  • Fatty acyl
  • Tetraalkylammonium salt
  • Carboxamide group
  • Secondary carboxylic acid amide
  • Secondary alcohol
  • Carboxylic acid derivative
  • Organopnictogen compound
  • Organic oxygen compound
  • Carbonyl group
  • Organooxygen compound
  • Amine
  • Alcohol
  • Organic oxide
  • Organic salt
  • Hydrocarbon derivative
  • Organic cation
  • Aliphatic acyclic compound
Molecular FrameworkAliphatic acyclic compounds
External DescriptorsNot Available
Ontology
Disposition

Biological Location:

  Subcellular:

  Biofluid and excreta:

  Tissue and substructures:

  Cell and elements:

Source:

Role

Biological role:

Industrial application:

Process

Naturally occurring process:

  Biological process:

    Cellular process:

Physical Properties
StateSolid
Experimental Properties
PropertyValueReference
Melting PointNot AvailableNot Available
Boiling PointNot AvailableNot Available
Water SolubilityNot AvailableNot Available
LogPNot AvailableNot Available
Predicted Properties
PropertyValueSource
Water Solubility3.2e-05 g/LALOGPS
logP6.15ALOGPS
logP10.82ChemAxon
logS-7.4ALOGPS
pKa (Strongest Acidic)1.87ChemAxon
pKa (Strongest Basic)0.012ChemAxon
Physiological Charge0ChemAxon
Hydrogen Acceptor Count4ChemAxon
Hydrogen Donor Count3ChemAxon
Polar Surface Area105.09 ŲChemAxon
Rotatable Bond Count42ChemAxon
Refractivity248.39 m³·mol⁻¹ChemAxon
Polarizability102.09 ųChemAxon
Number of Rings0ChemAxon
Bioavailability0ChemAxon
Rule of FiveYesChemAxon
Ghose FilterYesChemAxon
Veber's RuleYesChemAxon
MDDR-like RuleYesChemAxon
Spectra
Spectra
Spectrum TypeDescriptionSplash Key
Predicted GC-MSPredicted GC-MS Spectrum - GC-MS (Non-derivatized) - 70eV, Positivesplash10-00dj-4520255900-76928c88a4166dc86c05View in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 10V, Positivesplash10-00lb-9022458800-3cb08f9b07e88987e82cView in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 20V, Positivesplash10-014j-4394258000-72b8500010fe64c2cfc7View in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 40V, Positivesplash10-01bi-9186001100-061028fe4c0c9a5176d3View in MoNA
Biological Properties
Cellular Locations
  • Extracellular
  • Membrane
Biofluid Locations
  • Blood
Tissue Location
  • All Tissues
PathwaysNot Available
NameSMPDB/PathwhizKEGG
Normal Concentrations
BiofluidStatusValueAgeSexConditionReferenceDetails
BloodDetected and Quantified57.1 +/- 11.7 uMAdult (>18 years old)BothNormal details
Abnormal Concentrations
Not Available
Associated Disorders and Diseases
Disease ReferencesNone
Associated OMIM IDsNone
DrugBank IDNot Available
Phenol Explorer Compound IDNot Available
FoodDB IDFDB028382
KNApSAcK IDNot Available
Chemspider ID24768061
KEGG Compound IDNot Available
BioCyc IDNot Available
BiGG IDNot Available
Wikipedia LinkNot Available
METLIN IDNot Available
PubChem Compound52931208
PDB IDNot Available
ChEBI IDNot Available
References
Synthesis ReferenceNot Available
Material Safety Data Sheet (MSDS)Not Available
General References
  1. Ding J, Sorensen CM, Jaitly N, Jiang H, Orton DJ, Monroe ME, Moore RJ, Smith RD, Metz TO: Application of the accurate mass and time tag approach in studies of the human blood lipidome. J Chromatogr B Analyt Technol Biomed Life Sci. 2008 Aug 15;871(2):243-52. doi: 10.1016/j.jchromb.2008.04.040. Epub 2008 May 7. [PubMed:18502191 ]

Only showing the first 10 proteins. There are 50 proteins in total.

Enzymes

General function:
Involved in transferase activity, transferring hexosyl groups
Specific function:
Catalyzes the formation of some glycolipid via the addition of N-acetylgalactosamine (GalNAc) in alpha-1,3-linkage to some substrate. Glycolipids probably serve for adherence of some pathogens
Gene Name:
GBGT1
Uniprot ID:
Q8N5D6
Molecular weight:
40126.9
General function:
Involved in N-acetylglucosaminylphosphatidylinositol de
Specific function:
Involved in the second step of GPI biosynthesis. De-N-acetylation of N-acetylglucosaminyl-phosphatidylinositol.
Gene Name:
PIGL
Uniprot ID:
Q9Y2B2
Molecular weight:
28530.965
General function:
Involved in hydrolase activity
Specific function:
Converts sphingomyelin to ceramide. Also has phospholipase C activities toward 1,2-diacylglycerolphosphocholine and 1,2-diacylglycerolphosphoglycerol. Isoform 2 and isoform 3 have lost catalytic activity.
Gene Name:
SMPD1
Uniprot ID:
P17405
Molecular weight:
69935.53
General function:
Involved in galactosylgalactosylxylosylprotein 3-beta-glucuronosyltransferase activity
Specific function:
Involved in the biosynthesis of L2/HNK-1 carbohydrate epitope on glycoproteins. Can also play a role in glycosaminoglycan biosynthesis. Substrates include asialo-orosomucoid (ASOR), asialo-fetuin, and asialo-neural cell adhesion molecule. Requires sphingomyelin for activity: stearoyl-sphingomyelin was the most effective, followed by palmitoyl-sphingomyelin and lignoceroyl-sphingomyelin. Activity was demonstrated only for sphingomyelin with a saturated fatty acid and not for that with an unsaturated fatty acid, regardless of the length of the acyl group (By similarity).
Gene Name:
B3GAT1
Uniprot ID:
Q9P2W7
Molecular weight:
38255.675
General function:
Involved in phosphatidylinositol N-acetylglucosaminyltransferase activity
Specific function:
Part of the complex catalyzing the transfer of N-acetylglucosamine from UDP-N-acetylglucosamine to phosphatidylinositol, the first step of GPI biosynthesis.
Gene Name:
PIGQ
Uniprot ID:
Q9BRB3
Molecular weight:
65343.25
General function:
Involved in biosynthetic process
Specific function:
Necessary for the synthesis of N-acetylglucosaminyl-phosphatidylinositol, the very early intermediate in GPI-anchor biosynthesis.
Gene Name:
PIGA
Uniprot ID:
P37287
Molecular weight:
54126.065
General function:
Involved in phosphatidylinositol N-acetylglucosaminyltr
Specific function:
Part of the complex catalyzing the transfer of N-acetylglucosamine from UDP-N-acetylglucosamine to phosphatidylinositol, the first step of GPI biosynthesis.
Gene Name:
PIGH
Uniprot ID:
Q14442
Molecular weight:
21080.415
General function:
Involved in phosphatidylinositol N-acetylglucosaminyltr
Specific function:
Part of the complex catalyzing the transfer of N-acetylglucosamine from UDP-N-acetylglucosamine to phosphatidylinositol, the first step of GPI biosynthesis.
Gene Name:
PIGP
Uniprot ID:
P57054
Molecular weight:
18089.055
General function:
Involved in phosphatidylinositol N-acetylglucosaminyltransferase activity
Specific function:
Part of the complex catalyzing the transfer of N-acetylglucosamine from UDP-N-acetylglucosamine to phosphatidylinositol, the first step of GPI biosynthesis.
Gene Name:
PIGC
Uniprot ID:
Q92535
Molecular weight:
33582.18
General function:
Involved in catalytic activity
Specific function:
Converts sphingomyelin to ceramide. Also has phospholipase C activity toward palmitoyl lyso-phosphocholine. Does not appear to have nucleotide pyrophosphatase activity.
Gene Name:
ENPP7
Uniprot ID:
Q6UWV6
Molecular weight:
51493.415

Only showing the first 10 proteins. There are 50 proteins in total.