You are using an unsupported browser. Please upgrade your browser to a newer version to get the best experience on Human Metabolome Database.
Record Information
Version3.6
Creation Date2012-09-06 15:16:50 UTC
Update Date2014-09-23 05:25:45 UTC
HMDB IDHMDB14746
Secondary Accession NumbersNone
Metabolite Identification
Common NameChloroquine
DescriptionChloroquine is only found in individuals that have used or taken this drug. It is a prototypical antimalarial agent with a mechanism that is not well understood. It has also been used to treat rheumatoid arthritis, systemic lupus erythematosus, and in the systemic therapy of amebic liver abscesses. [PubChem]The mechanism of plasmodicidal action of chloroquine is not completely certain. Like other quinoline derivatives, it is thought to inhibit heme polymerase activity. This results in accumulation of free heme, which is toxic to the parasites. nside red blood cells, the malarial parasite must degrade hemoglobin to acquire essential amino acids, which the parasite requires to construct its own protein and for energy metabolism. Digestion is carried out in a vacuole of the parasite cell.During this process, the parasite produces the toxic and soluble molecule heme. The heme moiety consists of a porphyrin ring called Fe(II)-protoporphyrin IX (FP). To avoid destruction by this molecule, the parasite biocrystallizes heme to form hemozoin, a non-toxic molecule. Hemozoin collects in the digestive vacuole as insoluble crystals.Chloroquine enters the red blood cell, inhabiting parasite cell, and digestive vacuole by simple diffusion. Chloroquine then becomes protonated (to CQ2+), as the digestive vacuole is known to be acidic (pH 4.7); chloroquine then cannot leave by diffusion. Chloroquine caps hemozoin molecules to prevent further biocrystallization of heme, thus leading to heme buildup. Chloroquine binds to heme (or FP) to form what is known as the FP-Chloroquine complex; this complex is highly toxic to the cell and disrupts membrane function. Action of the toxic FP-Chloroquine and FP results in cell lysis and ultimately parasite cell autodigestion. In essence, the parasite cell drowns in its own metabolic products.
Structure
Thumb
Synonyms
  1. Chloraquine
  2. Chlorochine
  3. Chloroquina
  4. Chloroquinium
  5. Chlorquin
  6. Clorochina
Chemical FormulaC18H26ClN3
Average Molecular Weight319.872
Monoisotopic Molecular Weight319.181525554
IUPAC Name{4-[(7-chloroquinolin-4-yl)amino]pentyl}diethylamine
Traditional Namechloroquine
CAS Registry Number54-05-7
SMILES
CCN(CC)CCCC(C)NC1=C2C=CC(Cl)=CC2=NC=C1
InChI Identifier
InChI=1S/C18H26ClN3/c1-4-22(5-2)12-6-7-14(3)21-17-10-11-20-18-13-15(19)8-9-16(17)18/h8-11,13-14H,4-7,12H2,1-3H3,(H,20,21)
InChI KeyWHTVZRBIWZFKQO-UHFFFAOYSA-N
Chemical Taxonomy
KingdomOrganic Compounds
Super ClassAromatic Heteropolycyclic Compounds
ClassQuinolines and Derivatives
Sub ClassAminoquinolines and Derivatives
Other Descriptors
  • Aromatic Heteropolycyclic Compounds
  • quinoline alkaloid(ChEBI)
Substituents
  • Aminopyridine
  • Aryl Chloride
  • Chlorobenzene
  • Organochloride
  • Polyamine
  • Pyridine
  • Tertiary Aliphatic Amine (Trialkylamine)
Direct ParentAminoquinolines and Derivatives
Ontology
StatusExpected and Not Quantified
Origin
  • Drug
Biofunction
  • Amebicides
  • Antimalarials
  • Antirheumatic Agents
Application
  • Pharmaceutical
Cellular locations
  • Cytoplasm
  • Extracellular
  • Membrane
Physical Properties
StateSolid
Experimental Properties
PropertyValueReference
Melting Point289 °CNot Available
Boiling PointNot AvailableNot Available
Water Solubility1.75e-02 g/LNot Available
LogP4.3Not Available
Predicted Properties
PropertyValueSource
Water Solubility0.018 g/LALOGPS
logP5.28ALOGPS
logP3.93ChemAxon
logS-4.3ALOGPS
pKa (Strongest Basic)10.32ChemAxon
Physiological Charge2ChemAxon
Hydrogen Acceptor Count3ChemAxon
Hydrogen Donor Count1ChemAxon
Polar Surface Area28.16ChemAxon
Rotatable Bond Count8ChemAxon
Refractivity96.42ChemAxon
Polarizability37.29ChemAxon
Spectra
SpectraNot Available
Biological Properties
Cellular Locations
  • Cytoplasm
  • Extracellular
  • Membrane
Biofluid Locations
  • Blood
  • Urine
Tissue LocationNot Available
PathwaysNot Available
Normal Concentrations
BiofluidStatusValueAgeSexConditionReferenceDetails
BloodExpected but not QuantifiedNot ApplicableNot AvailableNot AvailableTaking drug identified by DrugBank entry DB00608
  • Not Applicable
details
UrineExpected but not QuantifiedNot ApplicableNot AvailableNot AvailableTaking drug identified by DrugBank entry DB00608
  • Not Applicable
details
Abnormal Concentrations
Not Available
Predicted Concentrations
BiofluidValueOriginal ageOriginal sexOriginal conditionComments
Blood0-3 uMAdult (>18 years old)BothNormalPredicted based on drug qualities
Blood0-2 umol/mmol creatinineAdult (>18 years old)BothNormalPredicted based on drug qualities
Associated Disorders and Diseases
Disease ReferencesNone
Associated OMIM IDsNone
DrugBank IDDB00608
DrugBank Metabolite IDNot Available
Phenol Explorer Compound IDNot Available
Phenol Explorer Metabolite IDNot Available
FoodDB IDNot Available
KNApSAcK IDNot Available
Chemspider ID2618
KEGG Compound IDC07625
BioCyc IDNot Available
BiGG IDNot Available
Wikipedia LinkChloroquine
NuGOwiki LinkHMDB14746
Metagene LinkHMDB14746
METLIN IDNot Available
PubChem Compound2719
PDB IDNot Available
ChEBI ID3638
References
Synthesis ReferenceNot Available
Material Safety Data Sheet (MSDS)Not Available
General ReferencesNot Available

Enzymes

General function:
Involved in glutathione transferase activity
Specific function:
Conjugation of reduced glutathione to a wide number of exogenous and endogenous hydrophobic electrophiles.
Gene Name:
GSTA2
Uniprot ID:
P09210
Molecular weight:
25663.675
References
  1. Chen X, Ji ZL, Chen YZ: TTD: Therapeutic Target Database. Nucleic Acids Res. 2002 Jan 1;30(1):412-5. Pubmed: 11752352
General function:
Involved in monooxygenase activity
Specific function:
Cytochromes P450 are a group of heme-thiolate monooxygenases. In liver microsomes, this enzyme is involved in an NADPH-dependent electron transport pathway. It performs a variety of oxidation reactions (e.g. caffeine 8-oxidation, omeprazole sulphoxidation, midazolam 1'-hydroxylation and midazolam 4-hydroxylation) of structurally unrelated compounds, including steroids, fatty acids, and xenobiotics. Acts as a 1,8-cineole 2-exo-monooxygenase. The enzyme also hydroxylates etoposide.
Gene Name:
CYP3A4
Uniprot ID:
P08684
Molecular weight:
57255.585
References
  1. Preissner S, Kroll K, Dunkel M, Senger C, Goldsobel G, Kuzman D, Guenther S, Winnenburg R, Schroeder M, Preissner R: SuperCYP: a comprehensive database on Cytochrome P450 enzymes including a tool for analysis of CYP-drug interactions. Nucleic Acids Res. 2010 Jan;38(Database issue):D237-43. Epub 2009 Nov 24. Pubmed: 19934256
General function:
Involved in monooxygenase activity
Specific function:
Responsible for the metabolism of many drugs and environmental chemicals that it oxidizes. It is involved in the metabolism of drugs such as antiarrhythmics, adrenoceptor antagonists, and tricyclic antidepressants.
Gene Name:
CYP2D6
Uniprot ID:
P10635
Molecular weight:
55768.94
References
  1. Preissner S, Kroll K, Dunkel M, Senger C, Goldsobel G, Kuzman D, Guenther S, Winnenburg R, Schroeder M, Preissner R: SuperCYP: a comprehensive database on Cytochrome P450 enzymes including a tool for analysis of CYP-drug interactions. Nucleic Acids Res. 2010 Jan;38(Database issue):D237-43. Epub 2009 Nov 24. Pubmed: 19934256
General function:
Involved in monooxygenase activity
Specific function:
Cytochromes P450 are a group of heme-thiolate monooxygenases. In liver microsomes, this enzyme is involved in an NADPH-dependent electron transport pathway. It oxidizes a variety of structurally unrelated compounds, including steroids, fatty acids, and xenobiotics.
Gene Name:
CYP3A5
Uniprot ID:
P20815
Molecular weight:
57108.065
References
  1. Preissner S, Kroll K, Dunkel M, Senger C, Goldsobel G, Kuzman D, Guenther S, Winnenburg R, Schroeder M, Preissner R: SuperCYP: a comprehensive database on Cytochrome P450 enzymes including a tool for analysis of CYP-drug interactions. Nucleic Acids Res. 2010 Jan;38(Database issue):D237-43. Epub 2009 Nov 24. Pubmed: 19934256
General function:
Involved in monooxygenase activity
Specific function:
Cytochromes P450 are a group of heme-thiolate monooxygenases. In liver microsomes, this enzyme is involved in an NADPH-dependent electron transport pathway. It oxidizes a variety of structurally unrelated compounds, including steroids, fatty acids, and xenobiotics.
Gene Name:
CYP1A1
Uniprot ID:
P04798
Molecular weight:
58164.815
References
  1. Preissner S, Kroll K, Dunkel M, Senger C, Goldsobel G, Kuzman D, Guenther S, Winnenburg R, Schroeder M, Preissner R: SuperCYP: a comprehensive database on Cytochrome P450 enzymes including a tool for analysis of CYP-drug interactions. Nucleic Acids Res. 2010 Jan;38(Database issue):D237-43. Epub 2009 Nov 24. Pubmed: 19934256
General function:
Involved in monooxygenase activity
Specific function:
Cytochromes P450 are a group of heme-thiolate monooxygenases. In liver microsomes, this enzyme is involved in an NADPH-dependent electron transport pathway. It oxidizes a variety of structurally unrelated compounds, including steroids, fatty acids, and xenobiotics. In the epoxidation of arachidonic acid it generates only 14,15- and 11,12-cis-epoxyeicosatrienoic acids. It is the principal enzyme responsible for the metabolism the anti-cancer drug paclitaxel (taxol).
Gene Name:
CYP2C8
Uniprot ID:
P10632
Molecular weight:
55824.275
References
  1. Preissner S, Kroll K, Dunkel M, Senger C, Goldsobel G, Kuzman D, Guenther S, Winnenburg R, Schroeder M, Preissner R: SuperCYP: a comprehensive database on Cytochrome P450 enzymes including a tool for analysis of CYP-drug interactions. Nucleic Acids Res. 2010 Jan;38(Database issue):D237-43. Epub 2009 Nov 24. Pubmed: 19934256
General function:
Involved in tumor necrosis factor receptor binding
Specific function:
Cytokine that binds to TNFRSF1A/TNFR1 and TNFRSF1B/TNFBR. It is mainly secreted by macrophages and can induce cell death of certain tumor cell lines. It is potent pyrogen causing fever by direct action or by stimulation of interleukin-1 secretion and is implicated in the induction of cachexia, Under certain conditions it can stimulate cell proliferation and induce cell differentiation
Gene Name:
TNF
Uniprot ID:
P01375
Molecular weight:
25644.1
References
  1. Jang CH, Choi JH, Byun MS, Jue DM: Chloroquine inhibits production of TNF-alpha, IL-1beta and IL-6 from lipopolysaccharide-stimulated human monocytes/macrophages by different modes. Rheumatology (Oxford). 2006 Jun;45(6):703-10. Epub 2006 Jan 17. Pubmed: 16418198
  2. Rachmilewitz D, Karmeli F, Shteingart S, Lee J, Takabayashi K, Raz E: Immunostimulatory oligonucleotides inhibit colonic proinflammatory cytokine production in ulcerative colitis. Inflamm Bowel Dis. 2006 May;12(5):339-45. Pubmed: 16670522
  3. Wozniacka A, Lesiak A, Narbutt J, McCauliffe DP, Sysa-Jedrzejowska A: Chloroquine treatment influences proinflammatory cytokine levels in systemic lupus erythematosus patients. Lupus. 2006;15(5):268-75. Pubmed: 16761500
  4. Lim EJ, Lee SH, Lee JG, Chin BR, Bae YS, Kim JR, Lee CH, Baek SH: Activation of toll-like receptor-9 induces matrix metalloproteinase-9 expression through Akt and tumor necrosis factor-alpha signaling. FEBS Lett. 2006 Aug 7;580(18):4533-8. Epub 2006 Jul 17. Pubmed: 16870179
  5. Dias-Melicio LA, Calvi SA, Bordon AP, Golim MA, Peracoli MT, Soares AM: Chloroquine is therapeutic in murine experimental model of paracoccidioidomycosis. FEMS Immunol Med Microbiol. 2007 Jun;50(1):133-43. Epub 2007 Apr 23. Pubmed: 17456179
General function:
Involved in protein binding
Specific function:
Key component of innate and adaptive immunity. TLRs (Toll-like receptors) control host immune response against pathogens through recognition of molecular patterns specific of microorganisms. TLR9 is a nucleotide-sensing TLR which is activated by unmethylated cytidine-phosphate-guanosine (CpG) dinucleotides. Acts via MYD88 and TRAF6, leading to NF-kappa-B activation, cytokine secretion and the inflammatory response
Gene Name:
TLR9
Uniprot ID:
Q9NR96
Molecular weight:
115858.7
References
  1. Trevani AS, Chorny A, Salamone G, Vermeulen M, Gamberale R, Schettini J, Raiden S, Geffner J: Bacterial DNA activates human neutrophils by a CpG-independent pathway. Eur J Immunol. 2003 Nov;33(11):3164-74. Pubmed: 14579285
  2. Rutz M, Metzger J, Gellert T, Luppa P, Lipford GB, Wagner H, Bauer S: Toll-like receptor 9 binds single-stranded CpG-DNA in a sequence- and pH-dependent manner. Eur J Immunol. 2004 Sep;34(9):2541-50. Pubmed: 15307186
  3. Lenert P: Inhibitory oligodeoxynucleotides - therapeutic promise for systemic autoimmune diseases? Clin Exp Immunol. 2005 Apr;140(1):1-10. Pubmed: 15762869
  4. Huang LY, Ishii KJ, Akira S, Aliberti J, Golding B: Th1-like cytokine induction by heat-killed Brucella abortus is dependent on triggering of TLR9. J Immunol. 2005 Sep 15;175(6):3964-70. Pubmed: 16148144
  5. Merrell MA, Ilvesaro JM, Lehtonen N, Sorsa T, Gehrs B, Rosenthal E, Chen D, Shackley B, Harris KW, Selander KS: Toll-like receptor 9 agonists promote cellular invasion by increasing matrix metalloproteinase activity. Mol Cancer Res. 2006 Jul;4(7):437-47. Pubmed: 16849519

Transporters

General function:
Involved in ATP binding
Specific function:
Energy-dependent efflux pump responsible for decreased drug accumulation in multidrug-resistant cells
Gene Name:
ABCB1
Uniprot ID:
P08183
Molecular weight:
141477.3
References
  1. Polli JW, Wring SA, Humphreys JE, Huang L, Morgan JB, Webster LO, Serabjit-Singh CS: Rational use of in vitro P-glycoprotein assays in drug discovery. J Pharmacol Exp Ther. 2001 Nov;299(2):620-8. Pubmed: 11602674