You are using an unsupported browser. Please upgrade your browser to a newer version to get the best experience on Human Metabolome Database.
Record Information
Version3.6
Creation Date2005-11-16 15:48:42 UTC
Update Date2014-06-13 15:46:53 UTC
HMDB IDHMDB00145
Secondary Accession Numbers
  • HMDB04449
Metabolite Identification
Common NameEstrone
DescriptionEstrone is a major mammalian estrogen. The conversion of the natural C19 steroids, testosterone and androstenedione into estrone is dependent on a complex key reaction catalyzed by the cytochrome P450 aromatase (EC 1.14.14.1, unspecific monooxygenase), which is expressed in many tissues of the adult human (e.g. ovary, fat tissue), but not in the liver. The ovaries after menopause continue to produce androstenedione and testosterone in significant amounts and these androgens are converted in fat, muscle, and skin into estrone. When women between the ages of 45 and 64 years have prophylactic oophorectomy (when hysterectomy is performed for benign disease to prevent the development of ovarian cancer), evidence suggests that oophorectomy increases the subsequent risk of coronary heart disease (CHD) and osteoporosis. Whereas 14,000 women die of ovarian cancer every year nearly 490,000 women die of heart disease and 48,000 women die within 1 year after hip fracture. Therefore, the decision to perform prophylactic oophorectomy should be approached with great caution for the majority of women who are at low risk of developing ovarian cancer. Steroid sulfatase (EC 3.1.6.2, STS) hydrolyzes steroid sulfates, such as estrone sulfate to estrone which can be converted to steroids with potent estrogenic properties, that is, estradiol; STS activity is much higher in breast tumors and high levels of STS mRNA expression in tumors are associated with a poor prognosis. The biological roles of estrogens in tumorigenesis are certainly different between the endometrium and breast, although both are considered "estrogen-dependent tissues". 17beta-hydroxysteroid dehydrogenases (EC 1.1.1.62, 17-HSDs) are enzymes involved in the formation of active sex steroids. estrone is interconverted by two enzymes 17-HSD types. Type 1 converts estrone to estradiol and Type 2 catalyzes the reverse reaction. (PMID: 17653961 , 17513923 , 17470679 , 17464097 ).
Structure
Thumb
Synonyms
  1. (+)-Estrone
  2. 1,3,5(10)-Estratrien-3-ol-17-one
  3. 3-Hydroxy-17-keto-estra-1,3,5-triene
  4. 3-Hydroxyestra-1,3,5(10)-trien-17-one
  5. 3-Hydroxyestra-1,3,5(10)-triene-17-one
  6. 3-Hydroxyoestra-1,3,5(10)-trien-17-one
  7. D1,3,5(10)-Estratrien-3-ol-17-one
Chemical FormulaC18H22O2
Average Molecular Weight270.3661
Monoisotopic Molecular Weight270.161979948
IUPAC Name(1S,10R,11S,15S)-5-hydroxy-15-methyltetracyclo[8.7.0.0^{2,7}.0^{11,15}]heptadeca-2,4,6-trien-14-one
Traditional IUPAC Nameestrone
CAS Registry Number53-16-7
SMILES
[H][C@@]12CCC(=O)[C@@]1(C)CC[C@]1([H])C3=C(CC[C@@]21[H])C=C(O)C=C3
InChI Identifier
InChI=1S/C18H22O2/c1-18-9-8-14-13-5-3-12(19)10-11(13)2-4-15(14)16(18)6-7-17(18)20/h3,5,10,14-16,19H,2,4,6-9H2,1H3/t14-,15-,16+,18+/m1/s1
InChI KeyDNXHEGUUPJUMQT-CBZIJGRNSA-N
Chemical Taxonomy
KingdomOrganic Compounds
Super ClassLipids
ClassSteroids and Steroid Derivatives
Sub ClassEstrogens and Derivatives
Other Descriptors
  • 17-oxo steroid(ChEBI)
  • Aromatic Homomonocyclic Compounds
  • Aromatic Homopolycyclic Compounds
  • C18 steroids (estrogens) and derivatives(KEGG)
  • C18 steroids (estrogens) and derivatives(Lipidmaps)
  • Estrane and derivatives(KEGG)
  • Estrane(KEGG)
  • Estrogens(KEGG)
  • Hydroxysteroids
  • Ketosteroids
  • estrogen(ChEBI)
Substituents
  • Cyclohexane
  • Cyclohexene
  • Ketone
  • Phenanthrene
  • Phenol
  • Phenol Derivative
  • Sesquiterpene Backbone
  • Tetralin
Direct ParentEstrogens and Derivatives
Ontology
StatusDetected and Quantified
Origin
  • Drug metabolite
  • Endogenous
  • Food
Biofunction
  • Cell signaling
  • Component of Androgen and estrogen metabolism
  • Component of Sulfur metabolism
  • Fuel and energy storage
  • Fuel or energy source
  • Membrane integrity/stability
  • Waste products
Application
  • Nutrients
  • Stabilizers
  • Surfactants and Emulsifiers
Cellular locations
  • Cytoplasm
  • Extracellular
  • Membrane (predicted from logP)
  • Endoplasmic reticulum
Physical Properties
StateSolid
Experimental Properties
PropertyValueReference
Melting Point258 - 260 °CNot Available
Boiling PointNot AvailableNot Available
Water Solubility0.03 mg/mLNot Available
LogP3.13HANSCH,C ET AL. (1995)
Predicted Properties
PropertyValueSource
water solubility0.0039 g/LALOGPS
logP4.03ALOGPS
logP4.31ChemAxon
logS-4.8ALOGPS
pKa (strongest acidic)10.33ChemAxon
pKa (strongest basic)-5.4ChemAxon
physiological charge0ChemAxon
hydrogen acceptor count2ChemAxon
hydrogen donor count1ChemAxon
polar surface area37.3ChemAxon
rotatable bond count0ChemAxon
refractivity79.08ChemAxon
polarizability31.3ChemAxon
Spectra
SpectraGC-MSMS/MS2D NMR
Biological Properties
Cellular Locations
  • Cytoplasm
  • Extracellular
  • Membrane (predicted from logP)
  • Endoplasmic reticulum
Biofluid Locations
  • Blood
  • Urine
Tissue Location
  • Kidney
  • Liver
Pathways
NameSMPDB LinkKEGG Link
Androgen and Estrogen MetabolismSMP00068map00150
Sulfate/Sulfite MetabolismSMP00041map00920
Normal Concentrations
BiofluidStatusValueAgeSexConditionReferenceDetails
BloodDetected and Quantified0.00017 +/- 0.000071 uMAdult (>18 years old)FemaleNormal details
BloodDetected and Quantified0.00020 (0.00011-0.00030) uMAdult (>18 years old)MaleNormal
    • The Merck Manual,...
details
BloodDetected and Quantified0.00012 (0.0-0.00024) uMAdult (>18 years old)FemaleNormal
    • The Merck Manual,...
details
UrineDetected and Quantified0.0013 +/- 0.00085 umol/mmol creatinineAdult (>18 years old)FemaleNormal details
Abnormal Concentrations
BiofluidStatusValueAgeSexConditionReferenceDetails
BloodDetected and Quantified0.00022 (0.00013-0.00038) uMAdult (>18 years old)Male
Severe coronary artery disease
details
BloodDetected and Quantified0.00021 (0.00011-0.00037) uMAdult (>18 years old)BothMinor electrocardiongraphic abnormalities and/or arrhythmia with negative coronary arteriograms details
BloodDetected and Quantified0.00035 (0.00014-0.00056) uMAdult (>18 years old)FemaleMenstrual cycle (follicular phase)
    • The Merck Manual,...
details
BloodDetected and Quantified0.00050 (0.00028-0.00074) uMAdult (>18 years old)FemaleMenstrual cycle (midcycle)
    • The Merck Manual,...
details
BloodDetected and Quantified0.00030 (0.00018-0.00042) uMAdult (>18 years old)FemaleMenstrual cycle (luteal phase)
    • The Merck Manual,...
details
Associated Disorders and Diseases
Disease References
Normal
  1. The Merck Manual, 17th ed. Mark H. Beers, MD, Robert Berkow, MD, eds. Whitehouse Station, NJ: Merck Research Labs, 1999.
Menstrual cycle
  1. The Merck Manual, 17th ed. Mark H. Beers, MD, Robert Berkow, MD, eds. Whitehouse Station, NJ: Merck Research Labs, 1999.
Associated OMIM IDsNone
DrugBank IDNot Available
DrugBank Metabolite IDDBMET00490
Phenol Explorer Compound IDNot Available
Phenol Explorer Metabolite IDNot Available
FoodDB IDFDB012798
KNApSAcK IDC00003663
Chemspider ID5660
KEGG Compound IDC00468
BioCyc IDESTRONE
BiGG ID35059
Wikipedia LinkEstrone
NuGOwiki LinkHMDB00145
Metagene LinkHMDB00145
METLIN ID264
PubChem Compound5870
PDB IDJ3Z
ChEBI ID17263
References
Synthesis ReferenceKocovsky, Paved; Baines, Richard S. Synthesis of estrone via a thallium(III)-mediated fragmentation of a 19-hydroxyandrost-5-ene precursor. Tetrahedron Letters (1993), 34(38), 6139-40.
Material Safety Data Sheet (MSDS)Download (PDF)
General References
  1. Pfeiffer E, Graf E, Gerstner S, Metzler M: Stimulation of estradiol glucuronidation: a protective mechanism against estradiol-mediated carcinogenesis? Mol Nutr Food Res. 2006 Apr;50(4-5):385-9. Pubmed: 16598814
  2. Czernik PJ, Little JM, Barone GW, Raufman JP, Radominska-Pandya A: Glucuronidation of estrogens and retinoic acid and expression of UDP-glucuronosyltransferase 2B7 in human intestinal mucosa. Drug Metab Dispos. 2000 Oct;28(10):1210-6. Pubmed: 10997942
  3. Kuhl H, Wiegratz I: Can 19-nortestosterone derivatives be aromatized in the liver of adult humans? Are there clinical implications? Climacteric. 2007 Aug;10(4):344-53. Pubmed: 17653961
  4. Parker WH, Broder MS, Liu Z, Shoupe D, Farquhar C, Berek JS: Ovarian conservation at the time of hysterectomy for benign disease. Clin Obstet Gynecol. 2007 Jun;50(2):354-61. Pubmed: 17513923
  5. Stanway SJ, Delavault P, Purohit A, Woo LW, Thurieau C, Potter BV, Reed MJ: Steroid sulfatase: a new target for the endocrine therapy of breast cancer. Oncologist. 2007 Apr;12(4):370-4. Pubmed: 17470679
  6. Ito K: Hormone replacement therapy and cancers: the biological roles of estrogen and progestin in tumorigenesis are different between the endometrium and breast. Tohoku J Exp Med. 2007 May;212(1):1-12. Pubmed: 17464097

Only showing the first 50 proteins. There are 62 proteins in total.

Enzymes

General function:
Involved in catalytic activity
Specific function:
Not Available
Gene Name:
ARSD
Uniprot ID:
P51689
Molecular weight:
64859.3
General function:
Involved in sulfotransferase activity
Specific function:
Sulfotransferase that utilizes 3'-phospho-5'-adenylyl sulfate (PAPS) as sulfonate donor to catalyze the sulfate conjugation of estradiol and estrone. May play a role in the regulation of estrogen receptor activity by metabolizing free estradiol. Maximally sulfates beta-estradiol and estrone at concentrations of 20 nM. Also sulfates dehydroepiandrosterone, pregnenolone, ethinylestradiol, equalenin, diethylstilbesterol and 1-naphthol, at significantly higher concentrations; however, cortisol, testosterone and dopamine are not sulfated.
Gene Name:
SULT1E1
Uniprot ID:
P49888
Molecular weight:
35126.185
Reactions
Phosphoadenosine phosphosulfate + Estrone → Adenosine 3',5'-diphosphate + Estrone sulfatedetails
General function:
Involved in oxidoreductase activity
Specific function:
Responsible for the reduction of the keto group on the C-3 of sterols.
Gene Name:
HSD17B7
Uniprot ID:
P56937
Molecular weight:
38205.77
Reactions
Estradiol + NAD(P)(+) → Estrone + NAD(P)Hdetails
Estradiol + NAD → Estrone + NADH + Hydrogen Iondetails
Estradiol + NADP → Estrone + NADPH + Hydrogen Iondetails
General function:
Involved in oxidoreductase activity
Specific function:
NAD-dependent 17-beta-hydroxysteroid dehydrogenase with highest activity towards estradiol. Has very low activity towards testosterone. The heteroteramer with CBR4 has NADH-dependent 3-ketoacyl-acyl carrier protein reductase activity. May play a role in biosynthesis of fatty acids in mitochondria.
Gene Name:
HSD17B8
Uniprot ID:
Q92506
Molecular weight:
26973.56
Reactions
Estradiol + NAD(P)(+) → Estrone + NAD(P)Hdetails
Estradiol + NAD → Estrone + NADH + Hydrogen Iondetails
Estradiol + NADP → Estrone + NADPH + Hydrogen Iondetails
General function:
Involved in monooxygenase activity
Specific function:
Not Available
Gene Name:
CYP1A1
Uniprot ID:
A0N0X8
Molecular weight:
58164.8
General function:
Involved in monooxygenase activity
Specific function:
Cytochromes P450 are a group of heme-thiolate monooxygenases. In liver microsomes, this enzyme is involved in an NADPH-dependent electron transport pathway. It oxidizes a variety of structurally unrelated compounds, including steroids, fatty acids, and xenobiotics. Most active in catalyzing 2-hydroxylation. Caffeine is metabolized primarily by cytochrome CYP1A2 in the liver through an initial N3-demethylation. Also acts in the metabolism of aflatoxin B1 and acetaminophen. Participates in the bioactivation of carcinogenic aromatic and heterocyclic amines. Catalizes the N-hydroxylation of heterocyclic amines and the O-deethylation of phenacetin.
Gene Name:
CYP1A2
Uniprot ID:
P05177
Molecular weight:
58406.915
General function:
Involved in monooxygenase activity
Specific function:
Cytochromes P450 are a group of heme-thiolate monooxygenases. In liver microsomes, this enzyme is involved in an NADPH-dependent electron transport pathway. It oxidizes a variety of structurally unrelated compounds, including steroids, fatty acids, and xenobiotics. Participates in the metabolism of an as-yet-unknown biologically active molecule that is a participant in eye development.
Gene Name:
CYP1B1
Uniprot ID:
Q16678
Molecular weight:
60845.33
General function:
Secondary metabolites biosynthesis, transport and catabolism
Specific function:
Cytochromes P450 are a group of heme-thiolate monooxygenases. In liver microsomes, this enzyme is involved in an NADPH-dependent electron transport pathway. It oxidizes a variety of structurally unrelated compounds, including steroids, fatty acids, and xenobiotics.
Gene Name:
CYP2A7
Uniprot ID:
P20853
Molecular weight:
56424.735
General function:
Involved in monooxygenase activity
Specific function:
Exhibits a coumarin 7-hydroxylase activity. Active in the metabolic activation of hexamethylphosphoramide, N,N-dimethylaniline, 2'-methoxyacetophenone, N-nitrosomethylphenylamine, and the tobacco-specific carcinogen, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone. Possesses phenacetin O-deethylation activity.
Gene Name:
CYP2A13
Uniprot ID:
Q16696
Molecular weight:
56687.095
General function:
Involved in monooxygenase activity
Specific function:
Cytochromes P450 are a group of heme-thiolate monooxygenases. In liver microsomes, this enzyme is involved in an NADPH-dependent electron transport pathway. It oxidizes a variety of structurally unrelated compounds, including steroids, fatty acids, and xenobiotics. Acts as a 1,4-cineole 2-exo-monooxygenase.
Gene Name:
CYP2B6
Uniprot ID:
P20813
Molecular weight:
56277.81
General function:
Involved in monooxygenase activity
Specific function:
Responsible for the metabolism of a number of therapeutic agents such as the anticonvulsant drug S-mephenytoin, omeprazole, proguanil, certain barbiturates, diazepam, propranolol, citalopram and imipramine.
Gene Name:
CYP2C19
Uniprot ID:
P33261
Molecular weight:
55944.565
General function:
Involved in monooxygenase activity
Specific function:
Cytochromes P450 are a group of heme-thiolate monooxygenases. In liver microsomes, this enzyme is involved in an NADPH-dependent electron transport pathway. It oxidizes a variety of structurally unrelated compounds, including steroids, fatty acids, and xenobiotics. In the epoxidation of arachidonic acid it generates only 14,15- and 11,12-cis-epoxyeicosatrienoic acids. It is the principal enzyme responsible for the metabolism the anti-cancer drug paclitaxel (taxol).
Gene Name:
CYP2C8
Uniprot ID:
P10632
Molecular weight:
55824.275
General function:
Involved in monooxygenase activity
Specific function:
Cytochromes P450 are a group of heme-thiolate monooxygenases. In liver microsomes, this enzyme is involved in an NADPH-dependent electron transport pathway. It oxidizes a variety of structurally unrelated compounds, including steroids, fatty acids, and xenobiotics. This enzyme contributes to the wide pharmacokinetics variability of the metabolism of drugs such as S-warfarin, diclofenac, phenytoin, tolbutamide and losartan.
Gene Name:
CYP2C9
Uniprot ID:
P11712
Molecular weight:
55627.365
General function:
Involved in monooxygenase activity
Specific function:
Not Available
Gene Name:
CYP2D6
Uniprot ID:
Q6NWU0
Molecular weight:
55729.9
General function:
Involved in monooxygenase activity
Specific function:
Metabolizes several precarcinogens, drugs, and solvents to reactive metabolites. Inactivates a number of drugs and xenobiotics and also bioactivates many xenobiotic substrates to their hepatotoxic or carcinogenic forms.
Gene Name:
CYP2E1
Uniprot ID:
P05181
Molecular weight:
56848.42
General function:
Secondary metabolites biosynthesis, transport and catabolism
Specific function:
May be involved in the metabolism of various pneumotoxicants including naphthalene. Is able to dealkylate ethoxycoumarin, propoxycoumarin, and pentoxyresorufin but possesses no activity toward ethoxyresorufin and only trace dearylation activity toward benzyloxyresorufin. Bioactivates 3-methylindole (3MI) by dehydrogenation to the putative electrophile 3-methylene-indolenine.
Gene Name:
CYP2F1
Uniprot ID:
P24903
Molecular weight:
55500.64
General function:
Involved in monooxygenase activity
Specific function:
This enzyme metabolizes arachidonic acid predominantly via a NADPH-dependent olefin epoxidation to all four regioisomeric cis-epoxyeicosatrienoic acids. One of the predominant enzymes responsible for the epoxidation of endogenous cardiac arachidonic acid pools.
Gene Name:
CYP2J2
Uniprot ID:
P51589
Molecular weight:
57610.165
General function:
Involved in monooxygenase activity
Specific function:
Cytochromes P450 are a group of heme-thiolate monooxygenases. In liver microsomes, this enzyme is involved in an NADPH-dependent electron transport pathway. It performs a variety of oxidation reactions (e.g. caffeine 8-oxidation, omeprazole sulphoxidation, midazolam 1'-hydroxylation and midazolam 4-hydroxylation) of structurally unrelated compounds, including steroids, fatty acids, and xenobiotics. Acts as a 1,8-cineole 2-exo-monooxygenase. The enzyme also hydroxylates etoposide.
Gene Name:
CYP3A4
Uniprot ID:
P08684
Molecular weight:
57255.585
General function:
Involved in monooxygenase activity
Specific function:
Cytochromes P450 are a group of heme-thiolate monooxygenases. In liver microsomes, this enzyme is involved in an NADPH-dependent electron transport pathway. It oxidizes a variety of structurally unrelated compounds, including steroids, fatty acids, and xenobiotics.
Gene Name:
CYP4B1
Uniprot ID:
P13584
Molecular weight:
58990.64
General function:
Involved in monooxygenase activity
Specific function:
Catalyzes the formation of aromatic C18 estrogens from C19 androgens.
Gene Name:
CYP19A1
Uniprot ID:
P11511
Molecular weight:
57882.48
General function:
Secondary metabolites biosynthesis, transport and catabolism
Specific function:
Not Available
Gene Name:
CYP4Z1
Uniprot ID:
Q86W10
Molecular weight:
59085.45
General function:
Involved in monooxygenase activity
Specific function:
Has a potential importance for extrahepatic xenobiotic metabolism.
Gene Name:
CYP2S1
Uniprot ID:
Q96SQ9
Molecular weight:
55816.205
General function:
Involved in transferase activity, transferring hexosyl groups
Specific function:
UDPGT is of major importance in the conjugation and subsequent elimination of potentially toxic xenobiotics and endogenous compounds.
Gene Name:
UGT2B11
Uniprot ID:
O75310
Molecular weight:
61037.8
Reactions
Estrone + Uridine diphosphate glucuronic acid → Estrone glucuronide + Uridine 5'-diphosphatedetails
General function:
Involved in transferase activity, transferring hexosyl groups
Specific function:
UDP-glucuronosyltransferases catalyze phase II biotransformation reactions in which lipophilic substrates are conjugated with glucuronic acid to increase water solubility and enhance excretion. They are of major importance in the conjugation and subsequent elimination of potentially toxic xenobiotics and endogenous compounds. Active on odorants and seems to be involved in olfaction; it could help clear lipophilic odorant molecules from the sensory epithelium.
Gene Name:
UGT2A1
Uniprot ID:
Q9Y4X1
Molecular weight:
60771.605
Reactions
Estrone + Uridine diphosphate glucuronic acid → Estrone glucuronide + Uridine 5'-diphosphatedetails
General function:
Involved in transferase activity, transferring hexosyl groups
Specific function:
UDPGTs are of major importance in the conjugation and subsequent elimination of potentially toxic xenobiotics and endogenous compounds. This isozyme has glucuronidating capacity with steroid substrates such as 5-beta-androstane 3-alpha,17-beta-diol, estradiol, ADT, eugenol and bile acids. Only isoform 1 seems to be active.
Gene Name:
UGT2B28
Uniprot ID:
Q9BY64
Molecular weight:
38742.9
Reactions
Estrone + Uridine diphosphate glucuronic acid → Estrone glucuronide + Uridine 5'-diphosphatedetails
General function:
Involved in transferase activity, transferring hexosyl groups
Specific function:
Not Available
Gene Name:
UGT1A10
Uniprot ID:
Q5DT02
Molecular weight:
59809.1
General function:
Involved in transferase activity, transferring hexosyl groups
Specific function:
Not Available
Gene Name:
UGT1A8
Uniprot ID:
Q5DSZ6
Molecular weight:
59741.0
General function:
Involved in transferase activity, transferring hexosyl groups
Specific function:
Not Available
Gene Name:
UGT1A7
Uniprot ID:
Q5DSZ7
Molecular weight:
59818.3
General function:
Involved in transferase activity, transferring hexosyl groups
Specific function:
UDPGT is of major importance in the conjugation and subsequent elimination of potentially toxic xenobiotics and endogenous compounds. This isoform has specificity for phenols.
Gene Name:
UGT1A6
Uniprot ID:
P19224
Molecular weight:
60750.215
Reactions
Estrone + Uridine diphosphate glucuronic acid → Estrone glucuronide + Uridine 5'-diphosphatedetails
General function:
Involved in transferase activity, transferring hexosyl groups
Specific function:
UDPGT is of major importance in the conjugation and subsequent elimination of potentially toxic xenobiotics and endogenous compounds.
Gene Name:
UGT1A5
Uniprot ID:
P35504
Molecular weight:
60070.565
Reactions
Estrone + Uridine diphosphate glucuronic acid → Estrone glucuronide + Uridine 5'-diphosphatedetails
General function:
Involved in transferase activity, transferring hexosyl groups
Specific function:
UDPGT is of major importance in the conjugation and subsequent elimination of potentially toxic xenobiotics and endogenous compounds. This isoform has specificity for phenols.
Gene Name:
UGT1A9
Uniprot ID:
O60656
Molecular weight:
59940.495
Reactions
Estrone + Uridine diphosphate glucuronic acid → Estrone glucuronide + Uridine 5'-diphosphatedetails
General function:
Involved in transferase activity, transferring hexosyl groups
Specific function:
UDPGT is of major importance in the conjugation and subsequent elimination of potentially toxic xenobiotics and endogenous compounds. This isoform glucuronidates bilirubin IX-alpha to form both the IX-alpha-C8 and IX-alpha-C12 monoconjugates and diconjugate.
Gene Name:
UGT1A4
Uniprot ID:
P22310
Molecular weight:
60024.535
Reactions
Estrone + Uridine diphosphate glucuronic acid → Estrone glucuronide + Uridine 5'-diphosphatedetails
General function:
Involved in transferase activity, transferring hexosyl groups
Specific function:
UDPGT is of major importance in the conjugation and subsequent elimination of potentially toxic xenobiotics and endogenous compounds. This isoform glucuronidates bilirubin IX-alpha to form both the IX-alpha-C8 and IX-alpha-C12 monoconjugates and diconjugate. Is also able to catalyze the glucuronidation of 17beta-estradiol, 17alpha-ethinylestradiol, 1-hydroxypyrene, 4-methylumbelliferone, 1-naphthol, paranitrophenol, scopoletin, and umbelliferone.
Gene Name:
UGT1A1
Uniprot ID:
P22309
Molecular weight:
59590.91
Reactions
Estrone + Uridine diphosphate glucuronic acid → Estrone glucuronide + Uridine 5'-diphosphatedetails
General function:
Involved in transferase activity, transferring hexosyl groups
Specific function:
UDPGT is of major importance in the conjugation and subsequent elimination of potentially toxic xenobiotics and endogenous compounds.
Gene Name:
UGT1A3
Uniprot ID:
P35503
Molecular weight:
60337.835
Reactions
Estrone + Uridine diphosphate glucuronic acid → Estrone glucuronide + Uridine 5'-diphosphatedetails
General function:
Involved in transferase activity, transferring hexosyl groups
Specific function:
UDPGTs are of major importance in the conjugation and subsequent elimination of potentially toxic xenobiotics and endogenous compounds. This isozyme is active on polyhydroxylated estrogens (such as estriol, 4-hydroxyestrone and 2-hydroxyestriol) and xenobiotics (such as 4-methylumbelliferone, 1-naphthol, 4-nitrophenol, 2-aminophenol, 4-hydroxybiphenyl and menthol). It is capable of 6 alpha-hydroxyglucuronidation of hyodeoxycholic acid.
Gene Name:
UGT2B4
Uniprot ID:
P06133
Molecular weight:
60512.035
Reactions
Estrone + Uridine diphosphate glucuronic acid → Estrone glucuronide + Uridine 5'-diphosphatedetails
General function:
Involved in transferase activity, transferring hexosyl groups
Specific function:
UDPGTs are of major importance in the conjugation and subsequent elimination of potentially toxic xenobiotics and endogenous compounds. This isozyme displays activity toward several classes of xenobiotic substrates, including simple phenolic compounds, 7-hydroxylated coumarins, flavonoids, anthraquinones, and certain drugs and their hydroxylated metabolites. It also catalyzes the glucuronidation of endogenous estrogens and androgens.
Gene Name:
UGT2B15
Uniprot ID:
P54855
Molecular weight:
61035.815
Reactions
Estrone + Uridine diphosphate glucuronic acid → Estrone glucuronide + Uridine 5'-diphosphatedetails
General function:
Involved in transferase activity, transferring hexosyl groups
Specific function:
UDPGT is of major importance in the conjugation and subsequent elimination of potentially toxic xenobiotics and endogenous compounds. The major substrates of this isozyme are eugenol > 4-methylumbelliferone > dihydrotestosterone (DHT) > androstane-3-alpha,17-beta-diol (3-alpha-diol) > testosterone > androsterone (ADT).
Gene Name:
UGT2B17
Uniprot ID:
O75795
Molecular weight:
61094.915
Reactions
Estrone + Uridine diphosphate glucuronic acid → Estrone glucuronide + Uridine 5'-diphosphatedetails
General function:
Involved in transferase activity, transferring hexosyl groups
Specific function:
UDP-glucuronosyltransferases catalyze phase II biotransformation reactions in which lipophilic substrates are conjugated with glucuronic acid to increase water solubility and enhance excretion. They are of major importance in the conjugation and subsequent elimination of potentially toxic xenobiotics and endogenous compounds (By similarity).
Gene Name:
UGT2A3
Uniprot ID:
Q6UWM9
Molecular weight:
60253.94
Reactions
Estrone + Uridine diphosphate glucuronic acid → Estrone glucuronide + Uridine 5'-diphosphatedetails
General function:
Involved in catalytic activity
Specific function:
May be essential for the correct composition of cartilage and bone matrix during development. Has no activity toward steroid sulfates
Gene Name:
ARSE
Uniprot ID:
P51690
Molecular weight:
65668.4
General function:
Involved in catalytic activity
Specific function:
Conversion of sulfated steroid precursors to estrogens during pregnancy.
Gene Name:
STS
Uniprot ID:
P08842
Molecular weight:
65491.72
General function:
Involved in oxidoreductase activity
Specific function:
Catalyzes the transformation of estrone (E1) into estradiol (E2), suggesting a central role in estrogen formation. Its strong expression in ovary and mammary gland suggest that it may constitute the major enzyme responsible for the conversion of E1 to E2 in women. Also has 3-ketoacyl-CoA reductase activity, reducing both long chain 3-ketoacyl-CoAs and long chain fatty acyl-CoAs, suggesting a role in long fatty acid elongation.
Gene Name:
HSD17B12
Uniprot ID:
Q53GQ0
Molecular weight:
34323.875
Reactions
Estradiol + NAD(P)(+) → Estrone + NAD(P)Hdetails
Estradiol + NAD → Estrone + NADH + Hydrogen Iondetails
Estradiol + NADP → Estrone + NADPH + Hydrogen Iondetails
General function:
Involved in oxidoreductase activity
Specific function:
Capable of catalyzing the interconversion of testosterone and androstenedione, as well as estradiol and estrone. Also has 20-alpha-HSD activity. Uses NADH while EDH17B3 uses NADPH.
Gene Name:
HSD17B2
Uniprot ID:
P37059
Molecular weight:
42784.75
Reactions
Estradiol + NAD(P)(+) → Estrone + NAD(P)Hdetails
Estradiol + NAD → Estrone + NADH + Hydrogen Iondetails
Estradiol + NADP → Estrone + NADPH + Hydrogen Iondetails
General function:
Involved in oxidoreductase activity
Specific function:
NAD-dependent oxidoreductase with broad substrate specificity that shows both oxidative and reductive activity (in vitro). Has 17-beta-hydroxysteroid dehydrogenase activity towards various steroids (in vitro). Converts 5-alpha-androstan-3-alpha,17-beta-diol to androsterone and estradiol to estrone (in vitro). Has 3-alpha-hydroxysteroid dehydrogenase activity towards androsterone (in vitro). Has retinol dehydrogenase activity towards all-trans-retinol (in vitro). Can convert androsterone to epi-androsterone. Androsterone is first oxidized to 5-alpha-androstane-3,17-dione and then reduced to epi-andosterone. Can act on both C-19 and C-21 3-alpha-hydroxysteroids.
Gene Name:
HSD17B6
Uniprot ID:
O14756
Molecular weight:
35965.41
Reactions
Estradiol + NAD(P)(+) → Estrone + NAD(P)Hdetails
Estradiol + NAD → Estrone + NADH + Hydrogen Iondetails
Estradiol + NADP → Estrone + NADPH + Hydrogen Iondetails
General function:
Involved in monooxygenase activity
Specific function:
Cytochromes P450 are a group of heme-thiolate monooxygenases. In liver microsomes, this enzyme is involved in an NADPH-dependent electron transport pathway. It oxidizes a variety of structurally unrelated compounds, including steroids, fatty acids, and xenobiotics.
Gene Name:
CYP1A1
Uniprot ID:
P04798
Molecular weight:
58164.815
General function:
Involved in estradiol 17-beta-dehydrogenase activity
Specific function:
Favors the reduction of estrogens and androgens. Also has 20-alpha-HSD activity. Uses preferentially NADH.
Gene Name:
HSD17B1
Uniprot ID:
P14061
Molecular weight:
34949.715
Reactions
Estradiol + NAD(P)(+) → Estrone + NAD(P)Hdetails
Estradiol + NAD → Estrone + NADH + Hydrogen Iondetails
Estradiol + NADP → Estrone + NADPH + Hydrogen Iondetails
General function:
Involved in oxidoreductase activity
Specific function:
Can convert androstan-3-alpha,17-beta-diol (3-alpha-diol) to androsterone in vitro, suggesting that it may participate in androgen metabolism during steroidogenesis. May act by metabolizing compounds that stimulate steroid synthesis and/or by generating metabolites that inhibit it. Has no activity toward DHEA (dehydroepiandrosterone), or A-dione (4-androste-3,17-dione), and only a slight activity toward testosterone to A-dione. Tumor-associated antigen in cutaneous T-cell lymphoma.
Gene Name:
HSD17B11
Uniprot ID:
Q8NBQ5
Molecular weight:
32935.525
Reactions
Estradiol + NAD(P)(+) → Estrone + NAD(P)Hdetails
General function:
Involved in transport
Specific function:
Serum albumin, the main protein of plasma, has a good binding capacity for water, Ca(2+), Na(+), K(+), fatty acids, hormones, bilirubin and drugs. Its main function is the regulation of the colloidal osmotic pressure of blood. Major zinc transporter in plasma, typically binds about 80% of all plasma zinc
Gene Name:
ALB
Uniprot ID:
P02768
Molecular weight:
69365.9
General function:
Involved in sequence-specific DNA binding transcription factor activity
Specific function:
Nuclear hormone receptor. The steroid hormones and their receptors are involved in the regulation of eukaryotic gene expression and affect cellular proliferation and differentiation in target tissues. Can activate the transcriptional activity of TFF1
Gene Name:
ESR1
Uniprot ID:
P03372
Molecular weight:
66215.4
General function:
Involved in androgen binding
Specific function:
Functions as an androgen transport protein, but may also be involved in receptor mediated processes. Each dimer binds one molecule of steroid. Specific for 5-alpha-dihydrotestosterone, testosterone, and 17-beta-estradiol. Regulates the plasma metabolic clearance rate of steroid hormones by controlling their plasma concentration
Gene Name:
SHBG
Uniprot ID:
P04278
Molecular weight:
43778.8
General function:
Involved in monooxygenase activity
Specific function:
Exhibits a high coumarin 7-hydroxylase activity. Can act in the hydroxylation of the anti-cancer drugs cyclophosphamide and ifosphamide. Competent in the metabolic activation of aflatoxin B1. Constitutes the major nicotine C-oxidase. Acts as a 1,4-cineole 2-exo-monooxygenase. Possesses low phenacetin O-deethylation activity.
Gene Name:
CYP2A6
Uniprot ID:
P11509
Molecular weight:
56517.005

Transporters

General function:
Involved in transmembrane transport
Specific function:
Mediates sodium-independent multispecific organic anion transport. Transport of prostaglandin E2, prostaglandin F2, tetracycline, bumetanide, estrone sulfate, glutarate, dehydroepiandrosterone sulfate, allopurinol, 5-fluorouracil, paclitaxel, L-ascorbic acid, salicylate, ethotrexate, and alpha- ketoglutarate
Gene Name:
SLC22A7
Uniprot ID:
Q9Y694
Molecular weight:
60025.0
General function:
Involved in transporter activity
Specific function:
Mediates the Na(+)-independent transport of organic anions such as pravastatin, taurocholate, methotrexate, dehydroepiandrosterone sulfate, 17-beta-glucuronosyl estradiol, estrone sulfate, prostaglandin E2, thromboxane B2, leukotriene C3, leukotriene E4, thyroxine and triiodothyronine. May play an important role in the clearance of bile acids and organic anions from the liver
Gene Name:
SLCO1B1
Uniprot ID:
Q9Y6L6
Molecular weight:
76448.0

Only showing the first 50 proteins. There are 62 proteins in total.