You are using an unsupported browser. Please upgrade your browser to a newer version to get the best experience on Human Metabolome Database.
Record Information
Creation Date2005-11-16 15:48:42 UTC
Update Date2013-02-09 00:08:44 UTC
Secondary Accession NumbersNone
Metabolite Identification
Common NameCapric acid
DescriptionCapric acid is a member of the series of fatty acids found in oils and animal fats. The names of Caproic, Caprylic, and Capric acids are all derived from the word caper (Latin: 'goat'). These are colorless light yellowish transparent oily liquids with unconfortable smells. These are used in organic synthesis, manufacture of perfume, medicine, lubricating grease, rubber and dye.(ChemicalLAND21).
  1. 1-Nonanecarboxylate
  2. 1-Nonanecarboxylic acid
  3. Caprate
  4. Capric acid
  5. Caprinate
  6. Caprinic acid
  7. Caprynate
  8. Caprynic acid
  9. Decoate
  10. Decoic acid
  11. Decylate
  12. Decylic acid
  13. Emery 659
  14. Lunac 10-95
  15. Lunac 10-98
  16. N-Caprate
  17. N-Capric acid
  18. N-Decanoate
  19. N-Decanoic acid
  20. N-Decoate
  21. N-Decoic acid
  22. N-Decylate
  23. N-Decylic acid
  24. Prifac 2906
  25. Prifac 296
Chemical FormulaC10H20O2
Average Molecular Weight172.2646
Monoisotopic Molecular Weight172.146329884
IUPAC Namedecanoic acid
Traditional Namedecanoic acid
CAS Registry Number334-48-5
InChI Identifier
Chemical Taxonomy
KingdomOrganic Compounds
Super ClassLipids
ClassFatty Acids and Conjugates
Sub ClassStraight Chain Fatty Acids
Other Descriptors
  • Aliphatic Acyclic Compounds
  • Organic Compounds
  • Saturated fatty acids(KEGG)
  • Straight chain fatty acids(KEGG)
  • Straight chain fatty acids(Lipidmaps)
  • medium-chain fatty acid(ChEBI)
  • straight-chain saturated fatty acid(ChEBI)
  • Carboxylic Acid
Direct ParentStraight Chain Fatty Acids
StatusDetected and Quantified
  • Endogenous
  • Food
  • Cell signaling
  • Fuel and energy storage
  • Fuel or energy source
  • Membrane integrity/stability
  • Nutrients
  • Stabilizers
  • Surfactants and Emulsifiers
Cellular locations
  • Extracellular
  • Membrane (predicted from logP)
Physical Properties
Experimental Properties
Melting Point31.9 °CNot Available
Boiling PointNot AvailableNot Available
Water Solubility0.0618 mg/mLNot Available
LogP4.09HANSCH,C ET AL. (1995)
Predicted Properties
Water Solubility0.095 g/LALOGPS
pKa (Strongest Acidic)4.95ChemAxon
Physiological Charge-1ChemAxon
Hydrogen Acceptor Count2ChemAxon
Hydrogen Donor Count1ChemAxon
Polar Surface Area37.3ChemAxon
Rotatable Bond Count8ChemAxon
Biological Properties
Cellular Locations
  • Extracellular
  • Membrane (predicted from logP)
Biofluid Locations
  • Blood
  • Urine
Tissue Location
  • Stratum Corneum
Beta Oxidation of Very Long Chain Fatty AcidsSMP00052map01040
Fatty Acid BiosynthesisSMP00456Not Available
Normal Concentrations
BloodDetected and Quantified11.0 (5.0-17.0) uMAdult (>18 years old)BothNormal details
UrineDetected but not QuantifiedNot ApplicableAdult (>18 years old)MaleNormal details
UrineDetected but not QuantifiedNot ApplicableAdult (>18 years old)BothNormal details
Abnormal Concentrations
UrineDetected but not QuantifiedNot ApplicableAdult (>18 years old)BothBreast cancer details
Associated Disorders and Diseases
Disease ReferencesNone
Associated OMIM IDsNone
DrugBank IDDB03600
DrugBank Metabolite IDNot Available
Phenol Explorer Compound IDNot Available
Phenol Explorer Metabolite IDNot Available
FoodDB IDFDB012027
KNApSAcK IDC00001213
Chemspider ID2863
KEGG Compound IDC01571
BiGG IDNot Available
Wikipedia LinkCapric acid
NuGOwiki LinkHMDB00511
Metagene LinkHMDB00511
PubChem Compound2969
ChEBI ID30813
Synthesis ReferenceWang, Qin; Ni, Xindi; Shi, Jianying. Manufacturing technology of capric acid and hydroxyalkyl amide from Litsea cubeba nucleolus oil. Huaxue Shijie (1993), 34(2), 84-7.
Material Safety Data Sheet (MSDS)Download (PDF)
General References
  1. Ohdoi C, Nyhan WL, Kuhara T: Chemical diagnosis of Lesch-Nyhan syndrome using gas chromatography-mass spectrometry detection. J Chromatogr B Analyt Technol Biomed Life Sci. 2003 Jul 15;792(1):123-30. Pubmed: 12829005
  2. Farrington CJ, Chalmers AH: Gas-chromatographic estimation of urinary oxalate and its comparison with a colorimetric method. Clin Chem. 1979 Dec;25(12):1993-6. Pubmed: 509698
  3. Lima TM, Kanunfre CC, Pompeia C, Verlengia R, Curi R: Ranking the toxicity of fatty acids on Jurkat and Raji cells by flow cytometric analysis. Toxicol In Vitro. 2002 Dec;16(6):741-7. Pubmed: 12423658
  4. Wanten GJ, Janssen FP, Naber AH: Saturated triglycerides and fatty acids activate neutrophils depending on carbon chain-length. Eur J Clin Invest. 2002 Apr;32(4):285-9. Pubmed: 11952815
  5. Lindmark T, Kimura Y, Artursson P: Absorption enhancement through intracellular regulation of tight junction permeability by medium chain fatty acids in Caco-2 cells. J Pharmacol Exp Ther. 1998 Jan;284(1):362-9. Pubmed: 9435199
  6. Kaiya H, Van Der Geyten S, Kojima M, Hosoda H, Kitajima Y, Matsumoto M, Geelissen S, Darras VM, Kangawa K: Chicken ghrelin: purification, cDNA cloning, and biological activity. Endocrinology. 2002 Sep;143(9):3454-63. Pubmed: 12193558
  7. Eriksson T, Bjorkman S, Roth B, Fyge A, Hoglund P: Enantiomers of thalidomide: blood distribution and the influence of serum albumin on chiral inversion and hydrolysis. Chirality. 1998;10(3):223-8. Pubmed: 9499573
  8. Da Silva MA, Medeiros VC, Langone MA, Freire DM: Synthesis of monocaprin catalyzed by lipase. Appl Biochem Biotechnol. 2003 Spring;105 -108:757-67. Pubmed: 12721413
  9. Imai T, Sakai M, Ohtake H, Azuma H, Otagiri M: Absorption-enhancing effect of glycyrrhizin induced in the presence of capric acid. Int J Pharm. 2005 Apr 27;294(1-2):11-21. Pubmed: 15814227
  10. Leopold CS, Lippold BC: An attempt to clarify the mechanism of the penetration enhancing effects of lipophilic vehicles with differential scanning calorimetry (DSC). J Pharm Pharmacol. 1995 Apr;47(4):276-81. Pubmed: 7791023
  11. Saso L, Valentini G, Grippa E, Leone MG, Silvestrini B: Effect of selected substances on heat-induced aggregation of albumin, IgG and lysozyme. Res Commun Mol Pathol Pharmacol. 1998 Oct;102(1):15-28. Pubmed: 9920343
  12. Kaiya H, Kojima M, Hosoda H, Riley LG, Hirano T, Grau EG, Kangawa K: Identification of tilapia ghrelin and its effects on growth hormone and prolactin release in the tilapia, Oreochromis mossambicus. Comp Biochem Physiol B Biochem Mol Biol. 2003 Jul;135(3):421-9. Pubmed: 12831762
  13. Coyne CB, Ribeiro CM, Boucher RC, Johnson LG: Acute mechanism of medium chain fatty acid-induced enhancement of airway epithelial permeability. J Pharmacol Exp Ther. 2003 May;305(2):440-50. Epub 2003 Feb 11. Pubmed: 12606647
  14. Tanaka S, Saitoh O, Tabata K, Matsuse R, Kojima K, Sugi K, Nakagawa K, Kayazawa M, Teranishi T, Uchida K, Hirata I, Katsu K: Medium-chain fatty acids stimulate interleukin-8 production in Caco-2 cells with different mechanisms from long-chain fatty acids. J Gastroenterol Hepatol. 2001 Jul;16(7):748-54. Pubmed: 11446882
  15. Duran M, Mitchell G, de Klerk JB, de Jager JP, Hofkamp M, Bruinvis L, Ketting D, Saudubray JM, Wadman SK: Octanoic acidemia and octanoylcarnitine excretion with dicarboxylic aciduria due to defective oxidation of medium-chain fatty acids. J Pediatr. 1985 Sep;107(3):397-404. Pubmed: 4032135
  16. Wallon C, Braaf Y, Wolving M, Olaison G, Soderholm JD: Endoscopic biopsies in Ussing chambers evaluated for studies of macromolecular permeability in the human colon. Scand J Gastroenterol. 2005 May;40(5):586-95. Pubmed: 16036512
  17. Van Immerseel F, De Buck J, Boyen F, Bohez L, Pasmans F, Volf J, Sevcik M, Rychlik I, Haesebrouck F, Ducatelle R: Medium-chain fatty acids decrease colonization and invasion through hilA suppression shortly after infection of chickens with Salmonella enterica serovar Enteritidis. Appl Environ Microbiol. 2004 Jun;70(6):3582-7. Pubmed: 15184160


General function:
Involved in acyltransferase activity
Specific function:
Beta-oxidation of fatty acids. The highest activity concerns the C6 to C10 chain length substrate. Converts the end product of pristanic acid beta oxidation, 4,8-dimethylnonanoyl-CoA, to its corresponding carnitine ester.
Gene Name:
Uniprot ID:
Molecular weight:
General function:
Involved in acyltransferase activity
Specific function:
Not Available
Gene Name:
Uniprot ID:
Molecular weight:
General function:
Involved in transporter activity
Specific function:
Mediates the transport of acylcarnitines of different length across the mitochondrial inner membrane from the cytosol to the mitochondrial matrix for their oxidation by the mitochondrial fatty acid-oxidation pathway.
Gene Name:
Uniprot ID:
Molecular weight:
General function:
Involved in serine-type endopeptidase activity
Specific function:
Furin is likely to represent the ubiquitous endoprotease activity within constitutive secretory pathways and capable of cleavage at the RX(K/R)R consensus motif
Gene Name:
Uniprot ID:
Molecular weight:
  1. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE: The Protein Data Bank. Nucleic Acids Res. 2000 Jan 1;28(1):235-42. Pubmed: 10592235
General function:
Involved in glycolipid transporter activity
Specific function:
Accelerates the intermembrane transfer of various glycolipids. Catalyzes the transfer of various glycosphingolipids between membranes but does not catalyze the transfer of phospholipids. May be involved in the intracellular translocation of glucosylceramides
Gene Name:
Uniprot ID:
Molecular weight:
  1. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE: The Protein Data Bank. Nucleic Acids Res. 2000 Jan 1;28(1):235-42. Pubmed: 10592235