You are using an unsupported browser. Please upgrade your browser to a newer version to get the best experience on Human Metabolome Database.
Record Information
Version3.6
Creation Date2012-09-06 15:16:50 UTC
Update Date2016-02-11 01:30:10 UTC
HMDB IDHMDB14817
Secondary Accession NumbersNone
Metabolite Identification
Common NameThioridazine
DescriptionA phenothiazine antipsychotic used in the management of psychoses, including schizophrenia, and in the control of severely disturbed or agitated behavior. It has little antiemetic activity. Thioridazine has a higher incidence of antimuscarinic effects, but a lower incidence of extrapyramidal symptoms, than chlorpromazine. (From Martindale, The Extra Pharmacopoeia, 30th ed, p618)
Structure
Thumb
Synonyms
ValueSource
10-[2-(1-Methyl-2-piperidyl)ethyl]-2-methylsulfanyl-phenothiazineChEBI
2-methylmercapto-10-(2-(N-Methyl-2-piperidyl)ethyl)phenothiazineChEBI
3-methylmercapto-N-(2'-(N-Methyl-2-piperidyl)ethyl)phenothiazineChEBI
MallorolChEBI
MallorylChEBI
MelerilChEBI
MellarilChEBI
Mellaril-SChEBI
MelleretsChEBI
MelleretteChEBI
MellerilChEBI
OrsanilChEBI
SonapaxChEBI
ThioridazinChEBI
ThioridazinumChEBI
TioridazinaChEBI
Thioridazine chlorideHMDB
Chemical FormulaC21H26N2S2
Average Molecular Weight370.575
Monoisotopic Molecular Weight370.153740222
IUPAC Name10-[2-(1-methylpiperidin-2-yl)ethyl]-2-(methylsulfanyl)-10H-phenothiazine
Traditional Namethioridazine
CAS Registry Number50-52-2
SMILES
CSC1=CC2=C(SC3=CC=CC=C3N2CCC2CCCCN2C)C=C1
InChI Identifier
InChI=1S/C21H26N2S2/c1-22-13-6-5-7-16(22)12-14-23-18-8-3-4-9-20(18)25-21-11-10-17(24-2)15-19(21)23/h3-4,8-11,15-16H,5-7,12-14H2,1-2H3
InChI KeyInChIKey=KLBQZWRITKRQQV-UHFFFAOYSA-N
Chemical Taxonomy
DescriptionThis compound belongs to the class of organic compounds known as phenothiazines. These are polycyclic aromatic compounds containing a phenothiazine moiety, which is a linear tricyclic system that consists of a two benzene rings joined by a para-thiazine ring.
KingdomOrganic compounds
Super ClassOrganoheterocyclic compounds
ClassBenzothiazines
Sub ClassPhenothiazines
Direct ParentPhenothiazines
Alternative Parents
Substituents
  • Phenothiazine
  • Alkyldiarylamine
  • Diarylthioether
  • Alkylarylthioether
  • Benzenoid
  • Piperidine
  • Para-thiazine
  • Tertiary aliphatic amine
  • Tertiary amine
  • Azacycle
  • Sulfenyl compound
  • Thioether
  • Hydrocarbon derivative
  • Organosulfur compound
  • Organonitrogen compound
  • Amine
  • Aromatic heteropolycyclic compound
Molecular FrameworkAromatic heteropolycyclic compounds
External DescriptorsNot Available
Ontology
StatusExpected but not Quantified
Origin
  • Drug
Biofunction
  • Antipsychotic Agents
  • Antipsychotics
  • Dopamine Antagonists
  • Phenothiazines
Application
  • Pharmaceutical
Cellular locations
  • Membrane
Physical Properties
StateSolid
Experimental Properties
PropertyValueReference
Melting Point73 °CNot Available
Boiling PointNot AvailableNot Available
Water Solubility8.55e-04 g/LNot Available
LogP5.9Not Available
Predicted Properties
PropertyValueSource
Water Solubility0.000855 mg/mLALOGPS
logP5.93ALOGPS
logP5.47ChemAxon
logS-5.6ALOGPS
pKa (Strongest Basic)8.93ChemAxon
Physiological Charge1ChemAxon
Hydrogen Acceptor Count2ChemAxon
Hydrogen Donor Count0ChemAxon
Polar Surface Area6.48 Å2ChemAxon
Rotatable Bond Count4ChemAxon
Refractivity113.52 m3·mol-1ChemAxon
Polarizability43.26 Å3ChemAxon
Number of Rings4ChemAxon
Bioavailability1ChemAxon
Rule of FiveYesChemAxon
Ghose FilterYesChemAxon
Veber's RuleYesChemAxon
MDDR-like RuleYesChemAxon
Spectra
Spectra
Spectrum TypeDescriptionSplash Key
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 10V, PositiveNot Available
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 20V, PositiveNot Available
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 40V, PositiveNot Available
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 10V, NegativeNot Available
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 20V, NegativeNot Available
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 40V, NegativeNot Available
MSMass Spectrum (Electron Ionization)splash10-006t-9552000000-ea4c5c56ee4333d0815aView in MoNA
Biological Properties
Cellular Locations
  • Membrane
Biofluid Locations
  • Blood
  • Urine
Tissue LocationNot Available
PathwaysNot Available
Normal Concentrations
BiofluidStatusValueAgeSexConditionReferenceDetails
BloodExpected but not QuantifiedNot ApplicableNot AvailableNot AvailableTaking drug identified by DrugBank entry DB00679
  • Not Applicable
details
UrineExpected but not QuantifiedNot ApplicableNot AvailableNot AvailableTaking drug identified by DrugBank entry DB00679
  • Not Applicable
details
Abnormal Concentrations
Not Available
Predicted Concentrations
BiofluidValueOriginal ageOriginal sexOriginal conditionComments
Blood0-3 uMAdult (>18 years old)BothNormalPredicted based on drug qualities
Blood0-1 umol/mmol creatinineAdult (>18 years old)BothNormalPredicted based on drug qualities
Associated Disorders and Diseases
Disease ReferencesNone
Associated OMIM IDsNone
DrugBank IDDB00679
DrugBank Metabolite IDNot Available
Phenol Explorer Compound IDNot Available
Phenol Explorer Metabolite IDNot Available
FoodDB IDNot Available
KNApSAcK IDNot Available
Chemspider ID5253
KEGG Compound IDNot Available
BioCyc IDNot Available
BiGG IDNot Available
Wikipedia LinkThioridazine
NuGOwiki LinkHMDB14817
Metagene LinkHMDB14817
METLIN IDNot Available
PubChem Compound5452
PDB IDNot Available
ChEBI ID9566
References
Synthesis ReferenceNot Available
Material Safety Data Sheet (MSDS)Not Available
General ReferencesNot Available

Enzymes

General function:
Involved in monooxygenase activity
Specific function:
Cytochromes P450 are a group of heme-thiolate monooxygenases. In liver microsomes, this enzyme is involved in an NADPH-dependent electron transport pathway. It oxidizes a variety of structurally unrelated compounds, including steroids, fatty acids, and xenobiotics. This enzyme contributes to the wide pharmacokinetics variability of the metabolism of drugs such as S-warfarin, diclofenac, phenytoin, tolbutamide and losartan.
Gene Name:
CYP2C9
Uniprot ID:
P11712
Molecular weight:
55627.365
References
  1. Preissner S, Kroll K, Dunkel M, Senger C, Goldsobel G, Kuzman D, Guenther S, Winnenburg R, Schroeder M, Preissner R: SuperCYP: a comprehensive database on Cytochrome P450 enzymes including a tool for analysis of CYP-drug interactions. Nucleic Acids Res. 2010 Jan;38(Database issue):D237-43. Epub 2009 Nov 24. [19934256 ]
General function:
Involved in monooxygenase activity
Specific function:
Responsible for the metabolism of a number of therapeutic agents such as the anticonvulsant drug S-mephenytoin, omeprazole, proguanil, certain barbiturates, diazepam, propranolol, citalopram and imipramine.
Gene Name:
CYP2C19
Uniprot ID:
P33261
Molecular weight:
55944.565
References
  1. Preissner S, Kroll K, Dunkel M, Senger C, Goldsobel G, Kuzman D, Guenther S, Winnenburg R, Schroeder M, Preissner R: SuperCYP: a comprehensive database on Cytochrome P450 enzymes including a tool for analysis of CYP-drug interactions. Nucleic Acids Res. 2010 Jan;38(Database issue):D237-43. Epub 2009 Nov 24. [19934256 ]
General function:
Involved in monooxygenase activity
Specific function:
Metabolizes several precarcinogens, drugs, and solvents to reactive metabolites. Inactivates a number of drugs and xenobiotics and also bioactivates many xenobiotic substrates to their hepatotoxic or carcinogenic forms.
Gene Name:
CYP2E1
Uniprot ID:
P05181
Molecular weight:
56848.42
References
  1. Preissner S, Kroll K, Dunkel M, Senger C, Goldsobel G, Kuzman D, Guenther S, Winnenburg R, Schroeder M, Preissner R: SuperCYP: a comprehensive database on Cytochrome P450 enzymes including a tool for analysis of CYP-drug interactions. Nucleic Acids Res. 2010 Jan;38(Database issue):D237-43. Epub 2009 Nov 24. [19934256 ]
General function:
Involved in monooxygenase activity
Specific function:
Responsible for the metabolism of many drugs and environmental chemicals that it oxidizes. It is involved in the metabolism of drugs such as antiarrhythmics, adrenoceptor antagonists, and tricyclic antidepressants.
Gene Name:
CYP2D6
Uniprot ID:
P10635
Molecular weight:
55768.94
References
  1. Otani K, Aoshima T: Pharmacogenetics of classical and new antipsychotic drugs. Ther Drug Monit. 2000 Feb;22(1):118-21. [10688273 ]
  2. Preissner S, Kroll K, Dunkel M, Senger C, Goldsobel G, Kuzman D, Guenther S, Winnenburg R, Schroeder M, Preissner R: SuperCYP: a comprehensive database on Cytochrome P450 enzymes including a tool for analysis of CYP-drug interactions. Nucleic Acids Res. 2010 Jan;38(Database issue):D237-43. Epub 2009 Nov 24. [19934256 ]
General function:
Involved in monooxygenase activity
Specific function:
Cytochromes P450 are a group of heme-thiolate monooxygenases. In liver microsomes, this enzyme is involved in an NADPH-dependent electron transport pathway. It oxidizes a variety of structurally unrelated compounds, including steroids, fatty acids, and xenobiotics. Most active in catalyzing 2-hydroxylation. Caffeine is metabolized primarily by cytochrome CYP1A2 in the liver through an initial N3-demethylation. Also acts in the metabolism of aflatoxin B1 and acetaminophen. Participates in the bioactivation of carcinogenic aromatic and heterocyclic amines. Catalizes the N-hydroxylation of heterocyclic amines and the O-deethylation of phenacetin.
Gene Name:
CYP1A2
Uniprot ID:
P05177
Molecular weight:
58406.915
References
  1. Preissner S, Kroll K, Dunkel M, Senger C, Goldsobel G, Kuzman D, Guenther S, Winnenburg R, Schroeder M, Preissner R: SuperCYP: a comprehensive database on Cytochrome P450 enzymes including a tool for analysis of CYP-drug interactions. Nucleic Acids Res. 2010 Jan;38(Database issue):D237-43. Epub 2009 Nov 24. [19934256 ]
General function:
Involved in monooxygenase activity
Specific function:
Cytochromes P450 are a group of heme-thiolate monooxygenases. In liver microsomes, this enzyme is involved in an NADPH-dependent electron transport pathway. It oxidizes a variety of structurally unrelated compounds, including steroids, fatty acids, and xenobiotics. In the epoxidation of arachidonic acid it generates only 14,15- and 11,12-cis-epoxyeicosatrienoic acids. It is the principal enzyme responsible for the metabolism the anti-cancer drug paclitaxel (taxol).
Gene Name:
CYP2C8
Uniprot ID:
P10632
Molecular weight:
55824.275
References
  1. Preissner S, Kroll K, Dunkel M, Senger C, Goldsobel G, Kuzman D, Guenther S, Winnenburg R, Schroeder M, Preissner R: SuperCYP: a comprehensive database on Cytochrome P450 enzymes including a tool for analysis of CYP-drug interactions. Nucleic Acids Res. 2010 Jan;38(Database issue):D237-43. Epub 2009 Nov 24. [19934256 ]
General function:
Involved in G-protein coupled receptor protein signaling pathway
Specific function:
This is one of the five types (D1 to D5) of receptors for dopamine. The activity of this receptor is mediated by G proteins which inhibit adenylyl cyclase
Gene Name:
DRD2
Uniprot ID:
P14416
Molecular weight:
50618.9
References
  1. Seeman P: Atypical neuroleptics: role of multiple receptors, endogenous dopamine, and receptor linkage. Acta Psychiatr Scand Suppl. 1990;358:14-20. [1978482 ]
  2. Assie MB, Sleight AJ, Koek W: Biphasic displacement of [3H]YM-09151-2 binding in the rat brain by thioridazine, risperidone and clozapine, but not by other antipsychotics. Eur J Pharmacol. 1993 Jun 24;237(2-3):183-9. [7689973 ]
  3. Dimpfel W, Spuler M, Wessel K: Different neuroleptics show common dose and time dependent effects in quantitative field potential analysis in freely moving rats. Psychopharmacology (Berl). 1992;107(2-3):195-202. [1352051 ]
  4. Barth VN, Chernet E, Martin LJ, Need AB, Rash KS, Morin M, Phebus LA: Comparison of rat dopamine D2 receptor occupancy for a series of antipsychotic drugs measured using radiolabeled or nonlabeled raclopride tracer. Life Sci. 2006 May 22;78(26):3007-12. Epub 2006 Jan 24. [16434058 ]
  5. Carey GJ, Bergman J: Discriminative-stimulus effects of clozapine in squirrel monkeys: comparison with conventional and novel antipsychotic drugs. Psychopharmacology (Berl). 1997 Aug;132(3):261-9. [9292626 ]
General function:
Involved in ion channel activity
Specific function:
Pore-forming (alpha) subunit of voltage-gated inwardly rectifying potassium channel. Channel properties are modulated by cAMP and subunit assembly. Mediates the rapidly activating component of the delayed rectifying potassium current in heart (IKr). Isoform 3 has no channel activity by itself, but modulates channel characteristics when associated with isoform 1
Gene Name:
KCNH2
Uniprot ID:
Q12809
Molecular weight:
126653.5
References
  1. Milnes JT, Witchel HJ, Leaney JL, Leishman DJ, Hancox JC: hERG K+ channel blockade by the antipsychotic drug thioridazine: An obligatory role for the S6 helix residue F656. Biochem Biophys Res Commun. 2006 Dec 8;351(1):273-80. Epub 2006 Oct 23. [17056009 ]
General function:
Involved in G-protein coupled receptor protein signaling pathway
Specific function:
This is one of the several different receptors for 5- hydroxytryptamine (serotonin), a biogenic hormone that functions as a neurotransmitter, a hormone, and a mitogen. This receptor mediates its action by association with G proteins that activate a phosphatidylinositol-calcium second messenger system. This receptor is involved in tracheal smooth muscle contraction, bronchoconstriction, and control of aldosterone production
Gene Name:
HTR2A
Uniprot ID:
P28223
Molecular weight:
52602.6
References
  1. Andree TH, Mikuni M, Tong CY, Koenig JI, Meltzer HY: Differential effect of subchronic treatment with various neuroleptic agents on serotonin2 receptors in rat cerebral cortex. J Neurochem. 1986 Jan;46(1):191-7. [2866233 ]
  2. Canton H, Verriele L, Millan MJ: Competitive antagonism of serotonin (5-HT)2C and 5-HT2A receptor-mediated phosphoinositide (PI) turnover by clozapine in the rat: a comparison to other antipsychotics. Neurosci Lett. 1994 Nov 7;181(1-2):65-8. [7898773 ]
  3. Burki HR: Binding of psychoactive drugs to rat brain amine receptors, measured ex vivo, and their effects on the metabolism of biogenic amines. Naunyn Schmiedebergs Arch Pharmacol. 1986 Mar;332(3):258-66. [2423886 ]
  4. Costall B, Naylor RJ: Behavioural interactions between 5-hydroxytryptophan, neuroleptic agents and 5-HT receptor antagonists in modifying rodent responding to aversive situations. Br J Pharmacol. 1995 Dec;116(7):2989-99. [8680734 ]
  5. Morisset S, Sahm UG, Traiffort E, Tardivel-Lacombe J, Arrang JM, Schwartz JC: Atypical neuroleptics enhance histamine turnover in brain via 5-Hydroxytryptamine2A receptor blockade. J Pharmacol Exp Ther. 1999 Feb;288(2):590-6. [9918563 ]
General function:
Involved in G-protein coupled receptor protein signaling pathway
Specific function:
This alpha-adrenergic receptor mediates its action by association with G proteins that activate a phosphatidylinositol- calcium second messenger system. Its effect is mediated by G(q) and G(11) proteins
Gene Name:
ADRA1A
Uniprot ID:
P35348
Molecular weight:
51486.0
References
  1. Sleight AJ, Koek W, Bigg DC: Binding of antipsychotic drugs at alpha 1A- and alpha 1B-adrenoceptors: risperidone is selective for the alpha 1B-adrenoceptors. Eur J Pharmacol. 1993 Jul 20;238(2-3):407-10. [7691623 ]
  2. Cahir M, King DJ: Antipsychotics lack alpha 1A/B adrenoceptor subtype selectivity in the rat. Eur Neuropsychopharmacol. 2005 Mar;15(2):231-4. [15695070 ]
General function:
Involved in G-protein coupled receptor protein signaling pathway
Specific function:
This alpha-adrenergic receptor mediates its action by association with G proteins that activate a phosphatidylinositol- calcium second messenger system
Gene Name:
ADRA1B
Uniprot ID:
P35368
Molecular weight:
56835.4
References
  1. Cahir M, King DJ: Antipsychotics lack alpha 1A/B adrenoceptor subtype selectivity in the rat. Eur Neuropsychopharmacol. 2005 Mar;15(2):231-4. [15695070 ]
General function:
Involved in G-protein coupled receptor protein signaling pathway
Specific function:
This is one of the five types (D1 to D5) of receptors for dopamine. The activity of this receptor is mediated by G proteins which activate adenylyl cyclase
Gene Name:
DRD1
Uniprot ID:
P21728
Molecular weight:
49292.8
References
  1. Hammock RG, Schroeder SR, Levine WR: The effect of clozapine on self-injurious behavior. J Autism Dev Disord. 1995 Dec;25(6):611-26. [8720030 ]