You are using an unsupported browser. Please upgrade your browser to a newer version to get the best experience on Human Metabolome Database.
Record Information
Version3.6
Creation Date2012-09-06 15:16:52 UTC
Update Date2016-02-11 01:33:11 UTC
HMDB IDHMDB15507
Secondary Accession NumbersNone
Metabolite Identification
Common NameGamma Hydroxybutyric Acid
DescriptionGamma Hydroxybutyric Acid, commonly abbreviated GHB, is a therapeutic drug which is illegal in multiple countries. It is currently regulated in the US and sold by Jazz Pharmaceuticals under the name Xyrem. However, it is important to note that GHB is a designated Orphan drug (in 1985). Today Xyrem is a Schedule III drug. However, GHB remains a Schedule I drug and the illicit use of Xyrem falls under penalties of Schedule I. GHB is a naturally occurring substance found in the central nervous system, wine, beef, small citrus fruits and almost all other living creatures in small amounts. It is used illegally under the street names Juice, Liquid Ecstasy or simply G, either as an intoxicant, or as a date rape drug. Xyrem is a central nervous system depressant that reduces excessive daytime sleepiness and cataplexy in patients with narcolepsy.
Structure
Thumb
Synonyms
ValueSource
4-HydroxybutanoateChEBI
gamma-HydroxybutyrateChEBI
GHBChEBI
4-Hydroxybutanoic acidGenerator
g HydroxybutyrateGenerator
g Hydroxybutyric acidGenerator
gamma HydroxybutyrateGenerator
γ hydroxybutyrateGenerator
γ hydroxybutyric acidGenerator
g-HydroxybutyrateGenerator
g-Hydroxybutyric acidGenerator
gamma-Hydroxybutyric acidGenerator
γ-hydroxybutyrateGenerator
γ-hydroxybutyric acidGenerator
4-Hydroxy-butanoic acidHMDB
4-Hydroxybutyric acidHMDB
JuiceHMDB
Liquid ecstasyHMDB
Sodium oxybateHMDB
Chemical FormulaC4H7O3
Average Molecular Weight103.0966
Monoisotopic Molecular Weight103.03951909
IUPAC Name4-hydroxybutanoate
Traditional Namegamma-hydroxybutyrate
CAS Registry Number591-81-1
SMILES
OCCCC([O-])=O
InChI Identifier
InChI=1S/C4H8O3/c5-3-1-2-4(6)7/h5H,1-3H2,(H,6,7)/p-1
InChI KeyInChIKey=SJZRECIVHVDYJC-UHFFFAOYSA-M
Chemical Taxonomy
DescriptionThis compound belongs to the class of organic compounds known as straight chain fatty acids. These are fatty acids with a straight aliphatic chain.
KingdomOrganic compounds
Super ClassLipids and lipid-like molecules
ClassFatty Acyls
Sub ClassFatty acids and conjugates
Direct ParentStraight chain fatty acids
Alternative Parents
Substituents
  • Straight chain fatty acid
  • Carboxylic acid salt
  • Monocarboxylic acid or derivatives
  • Carboxylic acid
  • Carboxylic acid derivative
  • Hydrocarbon derivative
  • Primary alcohol
  • Organooxygen compound
  • Carbonyl group
  • Alcohol
  • Organic anion
  • Aliphatic acyclic compound
Molecular FrameworkAliphatic acyclic compounds
External Descriptors
Ontology
StatusExpected but not Quantified
Origin
  • Drug
Biofunction
  • Adjuvants, Anesthesia
  • Anesthetics, Intravenous
Application
  • Pharmaceutical
Cellular locations
  • Membrane
Physical Properties
StateSolid
Experimental Properties
PropertyValueReference
Melting PointNot AvailableNot Available
Boiling PointNot AvailableNot Available
Water Solubility7.11e+02 g/LNot Available
LogPNot AvailableNot Available
Predicted Properties
PropertyValueSource
Water Solubility711.0 mg/mLALOGPS
logP-0.6ALOGPS
logP-0.51ChemAxon
logS0.77ALOGPS
pKa (Strongest Acidic)4.44ChemAxon
pKa (Strongest Basic)-2.4ChemAxon
Physiological Charge-1ChemAxon
Hydrogen Acceptor Count3ChemAxon
Hydrogen Donor Count1ChemAxon
Polar Surface Area60.36 Å2ChemAxon
Rotatable Bond Count3ChemAxon
Refractivity34.64 m3·mol-1ChemAxon
Polarizability9.73 Å3ChemAxon
Number of Rings0ChemAxon
Bioavailability1ChemAxon
Rule of FiveYesChemAxon
Ghose FilterYesChemAxon
Veber's RuleYesChemAxon
MDDR-like RuleYesChemAxon
Spectra
SpectraNot Available
Biological Properties
Cellular Locations
  • Membrane
Biofluid Locations
  • Blood
  • Urine
Tissue LocationNot Available
PathwaysNot Available
Normal Concentrations
BiofluidStatusValueAgeSexConditionReferenceDetails
BloodExpected but not QuantifiedNot ApplicableNot AvailableNot AvailableTaking drug identified by DrugBank entry DB01440
  • Not Applicable
details
UrineExpected but not QuantifiedNot ApplicableNot AvailableNot AvailableTaking drug identified by DrugBank entry DB01440
  • Not Applicable
details
Abnormal Concentrations
Not Available
Associated Disorders and Diseases
Disease ReferencesNone
Associated OMIM IDsNone
DrugBank IDDB01440
DrugBank Metabolite IDNot Available
Phenol Explorer Compound IDNot Available
Phenol Explorer Metabolite IDNot Available
FoodDB IDNot Available
KNApSAcK IDNot Available
Chemspider ID2300886
KEGG Compound IDC00989
BioCyc IDNot Available
BiGG IDNot Available
Wikipedia LinkGamma-Hydroxybutyric_acid
NuGOwiki LinkHMDB15507
Metagene LinkHMDB15507
METLIN IDNot Available
PubChem Compound3037032
PDB IDNot Available
ChEBI ID16724
References
Synthesis ReferenceNot Available
Material Safety Data Sheet (MSDS)Not Available
General References
  1. Hedner T, Hedner J, Iversen K, Wessberg P, Lundborg P: Gammahydroxybutyric acid: central biochemical and behavioral effects in neonatal rats. Pharmacol Biochem Behav. 1985 Aug;23(2):185-9. [2997806 ]
  2. van Amsterdam JG, Brunt TM, McMaster MT, Niesink R, van Noorden MS, van den Brink W: [Cognitive impairment due to intensive use and overdoses of gammahydroxybutyric acid (GHB)]. Tijdschr Psychiatr. 2012;54(12):1001-10. [23250641 ]
  3. Stock G, Heidt H, Buss J, Schlor KH: Sleep patterns in cat induced by gammahydroxybutyric acid. Electroencephalogr Clin Neurophysiol. 1978 Apr;44(4):523-7. [76561 ]
  4. Anden NE, Stock G: Inhibitory effect of gammahydroxybutyric acid and gammaaminobutyric acid on the dopamine cells in the substantia nigra. Naunyn Schmiedebergs Arch Pharmacol. 1973;279(1):89-92. [4356204 ]
  5. Gomes C, Flygt C, Henning M, Norin L, Svensson TH, Trolin G: Gammahydroxy butyric acid: cardiovascular effects in the rat. J Neural Transm. 1976;38(2):123-9. [1271050 ]
  6. Pedraza C, Garcia FB, Navarro JF: Neurotoxic effects induced by gammahydroxybutyric acid (GHB) in male rats. Int J Neuropsychopharmacol. 2009 Oct;12(9):1165-77. doi: 10.1017/S1461145709000157. Epub 2009 Mar 17. [19288974 ]
  7. Hedner T, Lundborg P: Effect of gammahydroxybutyric acid on catecholamine synthesis and utilization in the developing rat brain. J Neural Transm. 1982;54(1-2):19-28. [6809892 ]
  8. Hedner T, Lundborg P: Effect of gammahydroxybutyric acid on serotonin synthesis, concentration and metabolism in the developing rat brain. J Neural Transm. 1983;57(1-2):39-48. [6194255 ]
  9. Johansson B, Hardebo JE: Cerebrovascular permeability and cerebral blood flow in hypertension induced by gammahydroxybutyric acid. An experimental study in the rat. Acta Neurol Scand. 1982 May;65(5):448-57. [7113657 ]
  10. Hedner T, Lundborg P: Neurochemical characteristics of cerebral catecholamine neurons during the postnatal development in the rat. Med Biol. 1981 Aug;59(4):212-23. [6803074 ]
  11. Giorgi O, Rubio MC: Decreased 3H-L-quinuclidinyl benzilate binding and muscarine receptor subsensitivity after chronic gamma-butyrolactone treatment. Naunyn Schmiedebergs Arch Pharmacol. 1981 Dec;318(1):14-8. [7329448 ]
  12. Anden NE, Wachtel H: Biochemical effects of baclofen (beta-parachlorophenyl-GABA) on the dopamine and the noradrenaline in the rat brain. Acta Pharmacol Toxicol (Copenh). 1977 Feb;40(2):310-20. [576560 ]
  13. Stock G: Failure of anticholinergic drugs to antagonize the increase in dopamine seen after gammahydroxybutyric acid and axotomy. J Neural Transm. 1979;44(1-2):137-43. [438801 ]
  14. Baumann KW, Kassell NF, Olin J, Yamada T: The effects of gammahydroxybutyric acid on canine cerebral blood flow and metabolism. J Neurosurg. 1982 Aug;57(2):197-202. [7086512 ]
  15. Stock G, Magnusson T, Anden NE: Increase in brain dopamine after axotomy or treatment with gammahydroxybutyric acid due to elimination of the nerve impulse flow. Naunyn Schmiedebergs Arch Pharmacol. 1973;278(4):347-61. [4269968 ]
  16. Vulliemoz S, Vanini G, Truffert A, Chizzolini C, Seeck M: Epilepsy and cerebellar ataxia associated with anti-glutamic acid decarboxylase antibodies. J Neurol Neurosurg Psychiatry. 2007 Feb;78(2):187-9. [17229747 ]
  17. Gessa GL: [Guidelines for the drug therapy of alcoholism]. Recenti Prog Med. 1990 Mar;81(3):171-5. [2359869 ]
  18. Anden NE, Magnusson T, Stock G: Effects of drugs influencing monoamine mechanisms on the increase in brain dopamine produced by axotomy or treatment with gammahydroxybutyric acid. Naunyn Schmiedebergs Arch Pharmacol. 1973;278(4):363-72. [4269969 ]

Enzymes

General function:
Involved in ion transport
Specific function:
GABA, the major inhibitory neurotransmitter in the vertebrate brain, mediates neuronal inhibition by binding to the GABA/benzodiazepine receptor and opening an integral chloride channel
Gene Name:
GABRB1
Uniprot ID:
P18505
Molecular weight:
54234.1
References
  1. Maitre M, Humbert JP, Kemmel V, Aunis D, Andriamampandry C: [A mechanism for gamma-hydroxybutyrate (GHB) as a drug and a substance of abuse]. Med Sci (Paris). 2005 Mar;21(3):284-9. [15745703 ]

Transporters

General function:
Involved in transmembrane transport
Specific function:
Proton-linked monocarboxylate transporter. Catalyzes the rapid transport across the plasma membrane of many monocarboxylates such as lactate, pyruvate, branched-chain oxo acids derived from leucine, valine and isoleucine, and the ketone bodies acetoacetate, beta-hydroxybutyrate and acetate
Gene Name:
SLC16A3
Uniprot ID:
O15427
Molecular weight:
49468.9
References
  1. Manning Fox JE, Meredith D, Halestrap AP: Characterisation of human monocarboxylate transporter 4 substantiates its role in lactic acid efflux from skeletal muscle. J Physiol. 2000 Dec 1;529 Pt 2:285-93. [11101640 ]
General function:
Involved in transmembrane transport
Specific function:
Proton-linked monocarboxylate transporter. Catalyzes the rapid transport across the plasma membrane of many monocarboxylates such as lactate, pyruvate, branched-chain oxo acids derived from leucine, valine and isoleucine, and the ketone bodies acetoacetate, beta-hydroxybutyrate and acetate
Gene Name:
SLC16A1
Uniprot ID:
P53985
Molecular weight:
53957.7
References
  1. Lin RY, Vera JC, Chaganti RS, Golde DW: Human monocarboxylate transporter 2 (MCT2) is a high affinity pyruvate transporter. J Biol Chem. 1998 Oct 30;273(44):28959-65. [9786900 ]
General function:
Involved in transmembrane transport
Specific function:
Proton-linked monocarboxylate transporter. Catalyzes the rapid transport across the plasma membrane of many monocarboxylates such as lactate, pyruvate, branched-chain oxo acids derived from leucine, valine and isoleucine, and the ketone bodies acetoacetate, beta-hydroxybutyrate and acetate. MCT2 is a high affinity pyruvate transporter
Gene Name:
SLC16A7
Uniprot ID:
O60669
Molecular weight:
52185.7
References
  1. Lin RY, Vera JC, Chaganti RS, Golde DW: Human monocarboxylate transporter 2 (MCT2) is a high affinity pyruvate transporter. J Biol Chem. 1998 Oct 30;273(44):28959-65. [9786900 ]