| Record Information |
|---|
| Version | 5.0 |
|---|
| Status | Expected but not Quantified |
|---|
| Creation Date | 2012-09-14 22:21:17 UTC |
|---|
| Update Date | 2022-11-30 19:04:14 UTC |
|---|
| HMDB ID | HMDB0042061 |
|---|
| Secondary Accession Numbers | |
|---|
| Metabolite Identification |
|---|
| Common Name | TG(14:0/14:0/14:0) |
|---|
| Description | TG(14:0/14:0/14:0) belongs to the family of triradyglycerols, which are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. Their general formula is [R1]OCC(CO[R2])O[R3]. TG(14:0/14:0/14:0) is made up of one tetradecanoyl(R1), one tetradecanoyl(R2), and one tetradecanoyl(R3). |
|---|
| Structure | [H]C(COC(=O)CCCCCCCCCCCCC)(COC(=O)CCCCCCCCCCCCC)OC(=O)CCCCCCCCCCCCC InChI=1S/C45H86O6/c1-4-7-10-13-16-19-22-25-28-31-34-37-43(46)49-40-42(51-45(48)39-36-33-30-27-24-21-18-15-12-9-6-3)41-50-44(47)38-35-32-29-26-23-20-17-14-11-8-5-2/h42H,4-41H2,1-3H3 |
|---|
| Synonyms | | Value | Source |
|---|
| 1,2,3-Propanetriol tritetradecanoate | ChEBI | | 1,2,3-Trimyristoylglycerol | ChEBI | | 1,2,3-Tritetradecanoylglycerol | ChEBI | | Glycerol trimyristate | ChEBI | | Glyceryl trimyristate | ChEBI | | Glyceryl tritetradecanoate | ChEBI | | Myristic acid triglyceride | ChEBI | | Myristic triglyceride | ChEBI | | Myristin | ChEBI | | TAG(14:0/14:0/14:0) | ChEBI | | TAG(42:0) | ChEBI | | Tetradecanoic acid, 1,2,3-propanetriyl ester | ChEBI | | TG 14:0/14:0/14:0 | ChEBI | | TG(42:0) | ChEBI | | Tracylglycerol(14:0/14:0/14:0) | ChEBI | | Tracylglycerol(42:0) | ChEBI | | Trimyristoylglycerol | ChEBI | | Tritetradecanoylglycerol | ChEBI | | 1,2,3-Propanetriol tritetradecanoic acid | Generator | | Glycerol trimyristic acid | Generator | | Glyceryl trimyristic acid | Generator | | Glyceryl tritetradecanoic acid | Generator | | Myristate triglyceride | Generator | | Tetradecanoate, 1,2,3-propanetriyl ester | Generator | | 1,2,3-Tritetradecanoyl-rac-glycerol | HMDB | | 1-Myristoyl-2-myristoyl-3-myristoyl-glycerol | HMDB | | 1-Tetradecanoyl-2-tetradecanoyl-3-tetradecanoyl-glycerol | HMDB | | 2,3-Bis(tetradecanoyloxy)propyl myristate | HMDB | | Dynasan 114 | HMDB | | Glycerol tritetradecanoate | HMDB | | Myristin, tri- (8ci) | HMDB | | Tetradecanoic acid, 1,1',1''-(1,2,3-propanetriyl) ester | HMDB | | Tri-myristin | HMDB | | Triacylglycerol | HMDB | | Triglyceride | HMDB | | Trimyristin | HMDB | | TG(14:0/14:0/14:0) | Lipid Annotator, ChEBI |
|
|---|
| Chemical Formula | C45H86O6 |
|---|
| Average Molecular Weight | 723.1607 |
|---|
| Monoisotopic Molecular Weight | 722.642440484 |
|---|
| IUPAC Name | 1,3-bis(tetradecanoyloxy)propan-2-yl tetradecanoate |
|---|
| Traditional Name | trimyristin |
|---|
| CAS Registry Number | 555-45-3 |
|---|
| SMILES | [H]C(COC(=O)CCCCCCCCCCCCC)(COC(=O)CCCCCCCCCCCCC)OC(=O)CCCCCCCCCCCCC |
|---|
| InChI Identifier | InChI=1S/C45H86O6/c1-4-7-10-13-16-19-22-25-28-31-34-37-43(46)49-40-42(51-45(48)39-36-33-30-27-24-21-18-15-12-9-6-3)41-50-44(47)38-35-32-29-26-23-20-17-14-11-8-5-2/h42H,4-41H2,1-3H3 |
|---|
| InChI Key | DUXYWXYOBMKGIN-UHFFFAOYSA-N |
|---|
| Chemical Taxonomy |
|---|
| Description | Belongs to the class of organic compounds known as triacylglycerols. These are glycerides consisting of three fatty acid chains covalently bonded to a glycerol molecule through ester linkages. |
|---|
| Kingdom | Organic compounds |
|---|
| Super Class | Lipids and lipid-like molecules |
|---|
| Class | Glycerolipids |
|---|
| Sub Class | Triradylcglycerols |
|---|
| Direct Parent | Triacylglycerols |
|---|
| Alternative Parents | |
|---|
| Substituents | - Triacyl-sn-glycerol
- Tricarboxylic acid or derivatives
- Fatty acid ester
- Fatty acyl
- Carboxylic acid ester
- Carboxylic acid derivative
- Organic oxygen compound
- Organic oxide
- Hydrocarbon derivative
- Organooxygen compound
- Carbonyl group
- Aliphatic acyclic compound
|
|---|
| Molecular Framework | Aliphatic acyclic compounds |
|---|
| External Descriptors | |
|---|
| Ontology |
|---|
| Physiological effect | |
|---|
| Disposition | |
|---|
| Process | |
|---|
| Role | |
|---|
| Physical Properties |
|---|
| State | Solid |
|---|
| Experimental Molecular Properties | | Property | Value | Reference |
|---|
| Melting Point | 58.5 °C | Not Available | | Boiling Point | Not Available | Not Available | | Water Solubility | Not Available | Not Available | | LogP | 16.26 | Extrapolated |
|
|---|
| Experimental Chromatographic Properties | Not Available |
|---|
| Predicted Molecular Properties | |
|---|
| Predicted Chromatographic Properties | Predicted Collision Cross SectionsPredicted Retention Times Underivatized| Chromatographic Method | Retention Time | Reference |
|---|
| Measured using a Waters Acquity ultraperformance liquid chromatography (UPLC) ethylene-bridged hybrid (BEH) C18 column (100 mm × 2.1 mm; 1.7 μmparticle diameter). Predicted by Afia on May 17, 2022. Predicted by Afia on May 17, 2022. | 8.73 minutes | 32390414 | | Predicted by Siyang on May 30, 2022 | 51.4687 minutes | 33406817 | | Predicted by Siyang using ReTip algorithm on June 8, 2022 | 1.23 minutes | 32390414 | | Fem_Long = Waters ACQUITY UPLC HSS T3 C18 with Water:MeOH and 0.1% Formic Acid | 6793.8 seconds | 40023050 | | Fem_Lipids = Ascentis Express C18 with (60:40 water:ACN):(90:10 IPA:ACN) and 10mM NH4COOH + 0.1% Formic Acid | 1381.2 seconds | 40023050 | | Life_Old = Waters ACQUITY UPLC BEH C18 with Water:(20:80 acetone:ACN) and 0.1% Formic Acid | 548.6 seconds | 40023050 | | Life_New = RP Waters ACQUITY UPLC HSS T3 C18 with Water:(30:70 MeOH:ACN) and 0.1% Formic Acid | 625.3 seconds | 40023050 | | RIKEN = Waters ACQUITY UPLC BEH C18 with Water:ACN and 0.1% Formic Acid | 1265.8 seconds | 40023050 | | Eawag_XBridgeC18 = XBridge C18 3.5u 2.1x50 mm with Water:MeOH and 0.1% Formic Acid | 2364.7 seconds | 40023050 | | BfG_NTS_RP1 =Agilent Zorbax Eclipse Plus C18 (2.1 mm x 150 mm, 3.5 um) with Water:ACN and 0.1% Formic Acid | 2168.0 seconds | 40023050 | | HILIC_BDD_2 = Merck SeQuant ZIC-HILIC with ACN(0.1% formic acid):water(16 mM ammonium formate) | 138.9 seconds | 40023050 | | UniToyama_Atlantis = RP Waters Atlantis T3 (2.1 x 150 mm, 5 um) with ACN:Water and 0.1% Formic Acid | 4883.9 seconds | 40023050 | | BDD_C18 = Hypersil Gold 1.9µm C18 with Water:ACN and 0.1% Formic Acid | 1330.6 seconds | 40023050 | | UFZ_Phenomenex = Kinetex Core-Shell C18 2.6 um, 3.0 x 100 mm, Phenomenex with Water:MeOH and 0.1% Formic Acid | 4249.4 seconds | 40023050 | | SNU_RIKEN_POS = Waters ACQUITY UPLC BEH C18 with Water:ACN and 0.1% Formic Acid | 1815.9 seconds | 40023050 | | RPMMFDA = Waters ACQUITY UPLC BEH C18 with Water:ACN and 0.1% Formic Acid | 1025.8 seconds | 40023050 | | MTBLS87 = Merck SeQuant ZIC-pHILIC column with ACN:Water and :ammonium carbonate | 1266.4 seconds | 40023050 | | KI_GIAR_zic_HILIC_pH2_7 = Merck SeQuant ZIC-HILIC with ACN:Water and 0.1% FA | 1250.6 seconds | 40023050 | | Meister zic-pHILIC pH9.3 = Merck SeQuant ZIC-pHILIC column with ACN:Water 5mM NH4Ac pH9.3 and 5mM ammonium acetate in water | 10.2 seconds | 40023050 |
Predicted Kovats Retention IndicesUnderivatized |
|---|
| Spectra |
|---|
| GC-MS Spectra| Spectrum Type | Description | Splash Key | Deposition Date | Source | View |
|---|
| Experimental GC-MS | GC-MS Spectrum - TG(14:0/14:0/14:0) EI-B (Non-derivatized) | splash10-01ot-3192600000-544e33d6694aa5ccf3e5 | 2017-09-12 | HMDB team, MONA, MassBank | View Spectrum | | Experimental GC-MS | GC-MS Spectrum - TG(14:0/14:0/14:0) EI-B (Non-derivatized) | splash10-01ot-3192600000-544e33d6694aa5ccf3e5 | 2018-05-18 | HMDB team, MONA, MassBank | View Spectrum | | Predicted GC-MS | Predicted GC-MS Spectrum - TG(14:0/14:0/14:0) GC-MS (Non-derivatized) - 70eV, Positive | Not Available | 2021-10-13 | Wishart Lab | View Spectrum |
MS/MS Spectra| Spectrum Type | Description | Splash Key | Deposition Date | Source | View |
|---|
| Predicted LC-MS/MS | Predicted LC-MS/MS Spectrum - TG(14:0/14:0/14:0) 10V, Positive-QTOF | splash10-0006-0000000900-396577773223fda3ba4f | 2017-10-04 | Wishart Lab | View Spectrum | | Predicted LC-MS/MS | Predicted LC-MS/MS Spectrum - TG(14:0/14:0/14:0) 20V, Positive-QTOF | splash10-0006-0000000900-396577773223fda3ba4f | 2017-10-04 | Wishart Lab | View Spectrum | | Predicted LC-MS/MS | Predicted LC-MS/MS Spectrum - TG(14:0/14:0/14:0) 40V, Positive-QTOF | splash10-006t-0000900700-9dda28d1e6f293f607a5 | 2017-10-04 | Wishart Lab | View Spectrum | | Predicted LC-MS/MS | Predicted LC-MS/MS Spectrum - TG(14:0/14:0/14:0) 10V, Positive-QTOF | splash10-0002-0000000900-487bf2cf36214179ac31 | 2021-09-22 | Wishart Lab | View Spectrum | | Predicted LC-MS/MS | Predicted LC-MS/MS Spectrum - TG(14:0/14:0/14:0) 20V, Positive-QTOF | splash10-0002-0000000900-487bf2cf36214179ac31 | 2021-09-22 | Wishart Lab | View Spectrum | | Predicted LC-MS/MS | Predicted LC-MS/MS Spectrum - TG(14:0/14:0/14:0) 40V, Positive-QTOF | splash10-0002-0000000900-487bf2cf36214179ac31 | 2021-09-22 | Wishart Lab | View Spectrum | | Predicted LC-MS/MS | Predicted LC-MS/MS Spectrum - TG(14:0/14:0/14:0) 10V, Negative-QTOF | splash10-00fr-0070510900-dfb0ad823350a6dc3139 | 2021-09-24 | Wishart Lab | View Spectrum | | Predicted LC-MS/MS | Predicted LC-MS/MS Spectrum - TG(14:0/14:0/14:0) 20V, Negative-QTOF | splash10-0pxs-0090200000-e06b0c234354638d5127 | 2021-09-24 | Wishart Lab | View Spectrum | | Predicted LC-MS/MS | Predicted LC-MS/MS Spectrum - TG(14:0/14:0/14:0) 40V, Negative-QTOF | splash10-056r-0290100000-ae1db544e278fbf885f9 | 2021-09-24 | Wishart Lab | View Spectrum | | Predicted LC-MS/MS | Predicted LC-MS/MS Spectrum - TG(14:0/14:0/14:0) 10V, Positive-QTOF | splash10-004i-0000000900-ef55c4ed517a7cf683c2 | 2021-09-24 | Wishart Lab | View Spectrum | | Predicted LC-MS/MS | Predicted LC-MS/MS Spectrum - TG(14:0/14:0/14:0) 20V, Positive-QTOF | splash10-004i-0000000900-ef55c4ed517a7cf683c2 | 2021-09-24 | Wishart Lab | View Spectrum | | Predicted LC-MS/MS | Predicted LC-MS/MS Spectrum - TG(14:0/14:0/14:0) 40V, Positive-QTOF | splash10-0uii-0090090900-07e83a6429c414defd46 | 2021-09-24 | Wishart Lab | View Spectrum | | Predicted LC-MS/MS | Predicted LC-MS/MS Spectrum - TG(14:0/14:0/14:0) 10V, Positive-QTOF | splash10-00di-5020305900-6df82ce747d12f594b5b | 2021-09-24 | Wishart Lab | View Spectrum | | Predicted LC-MS/MS | Predicted LC-MS/MS Spectrum - TG(14:0/14:0/14:0) 20V, Positive-QTOF | splash10-08g0-9151317100-81a3f1d03a780081c9c2 | 2021-09-24 | Wishart Lab | View Spectrum | | Predicted LC-MS/MS | Predicted LC-MS/MS Spectrum - TG(14:0/14:0/14:0) 40V, Positive-QTOF | splash10-0909-2392110000-70fab857e040f8a773cc | 2021-09-24 | Wishart Lab | View Spectrum | | Predicted LC-MS/MS | Predicted LC-MS/MS Spectrum - TG(14:0/14:0/14:0) 10V, Positive-QTOF | splash10-0006-0000000900-c83d51e3f6cbcd42c11e | 2021-09-25 | Wishart Lab | View Spectrum | | Predicted LC-MS/MS | Predicted LC-MS/MS Spectrum - TG(14:0/14:0/14:0) 20V, Positive-QTOF | splash10-0006-0000000900-c83d51e3f6cbcd42c11e | 2021-09-25 | Wishart Lab | View Spectrum | | Predicted LC-MS/MS | Predicted LC-MS/MS Spectrum - TG(14:0/14:0/14:0) 40V, Positive-QTOF | splash10-006t-0010900700-60e08461be3e70355fa4 | 2021-09-25 | Wishart Lab | View Spectrum |
NMR Spectra| Spectrum Type | Description | Deposition Date | Source | View |
|---|
| Predicted 1D NMR | 13C NMR Spectrum (1D, 100 MHz, H2O, predicted) | 2022-08-21 | Wishart Lab | View Spectrum | | Predicted 1D NMR | 1H NMR Spectrum (1D, 100 MHz, H2O, predicted) | 2022-08-21 | Wishart Lab | View Spectrum | | Predicted 1D NMR | 13C NMR Spectrum (1D, 1000 MHz, H2O, predicted) | 2022-08-21 | Wishart Lab | View Spectrum | | Predicted 1D NMR | 1H NMR Spectrum (1D, 1000 MHz, H2O, predicted) | 2022-08-21 | Wishart Lab | View Spectrum | | Predicted 1D NMR | 13C NMR Spectrum (1D, 200 MHz, H2O, predicted) | 2022-08-21 | Wishart Lab | View Spectrum | | Predicted 1D NMR | 1H NMR Spectrum (1D, 200 MHz, H2O, predicted) | 2022-08-21 | Wishart Lab | View Spectrum | | Predicted 1D NMR | 13C NMR Spectrum (1D, 300 MHz, H2O, predicted) | 2022-08-21 | Wishart Lab | View Spectrum | | Predicted 1D NMR | 1H NMR Spectrum (1D, 300 MHz, H2O, predicted) | 2022-08-21 | Wishart Lab | View Spectrum | | Predicted 1D NMR | 13C NMR Spectrum (1D, 400 MHz, H2O, predicted) | 2022-08-21 | Wishart Lab | View Spectrum | | Predicted 1D NMR | 1H NMR Spectrum (1D, 400 MHz, H2O, predicted) | 2022-08-21 | Wishart Lab | View Spectrum | | Predicted 1D NMR | 13C NMR Spectrum (1D, 500 MHz, H2O, predicted) | 2022-08-21 | Wishart Lab | View Spectrum | | Predicted 1D NMR | 1H NMR Spectrum (1D, 500 MHz, H2O, predicted) | 2022-08-21 | Wishart Lab | View Spectrum | | Predicted 1D NMR | 13C NMR Spectrum (1D, 600 MHz, H2O, predicted) | 2022-08-21 | Wishart Lab | View Spectrum | | Predicted 1D NMR | 1H NMR Spectrum (1D, 600 MHz, H2O, predicted) | 2022-08-21 | Wishart Lab | View Spectrum | | Predicted 1D NMR | 13C NMR Spectrum (1D, 700 MHz, H2O, predicted) | 2022-08-21 | Wishart Lab | View Spectrum | | Predicted 1D NMR | 1H NMR Spectrum (1D, 700 MHz, H2O, predicted) | 2022-08-21 | Wishart Lab | View Spectrum | | Predicted 1D NMR | 13C NMR Spectrum (1D, 800 MHz, H2O, predicted) | 2022-08-21 | Wishart Lab | View Spectrum | | Predicted 1D NMR | 1H NMR Spectrum (1D, 800 MHz, H2O, predicted) | 2022-08-21 | Wishart Lab | View Spectrum | | Predicted 1D NMR | 13C NMR Spectrum (1D, 900 MHz, H2O, predicted) | 2022-08-21 | Wishart Lab | View Spectrum | | Predicted 1D NMR | 1H NMR Spectrum (1D, 900 MHz, H2O, predicted) | 2022-08-21 | Wishart Lab | View Spectrum |
|
|---|
| Biological Properties |
|---|
| Cellular Locations | |
|---|
| Biospecimen Locations | Not Available |
|---|
| Tissue Locations | Not Available |
|---|
| Pathways | |
|---|
| Normal Concentrations |
|---|
| Not Available |
|---|
| Abnormal Concentrations |
|---|
| Not Available |
|---|
| Predicted Concentrations |
|---|
| |
| Blood | 0.031 +/- 0.018 uM | Adult (>18 years old) | Both | Normal (Most Probable) | Calculated using MetaboAnalyst | | Blood | 17.544 +/- 5.133 uM | Adult (>18 years old) | Both | Normal (Upper Limit) | Calculated using MetaboAnalyst |
|
|---|
| Associated Disorders and Diseases |
|---|
| Disease References | None |
|---|
| Associated OMIM IDs | None |
|---|
| External Links |
|---|
| DrugBank ID | Not Available |
|---|
| Phenol Explorer Compound ID | Not Available |
|---|
| FooDB ID | FDB002889 |
|---|
| KNApSAcK ID | Not Available |
|---|
| Chemspider ID | 10675 |
|---|
| KEGG Compound ID | Not Available |
|---|
| BioCyc ID | Not Available |
|---|
| BiGG ID | Not Available |
|---|
| Wikipedia Link | Not Available |
|---|
| METLIN ID | Not Available |
|---|
| PubChem Compound | 11148 |
|---|
| PDB ID | Not Available |
|---|
| ChEBI ID | 77391 |
|---|
| Food Biomarker Ontology | Not Available |
|---|
| VMH ID | Not Available |
|---|
| MarkerDB ID | Not Available |
|---|
| Good Scents ID | Not Available |
|---|
| References |
|---|
| Synthesis Reference | Not Available |
|---|
| Material Safety Data Sheet (MSDS) | Not Available |
|---|
| General References | - Pynn CJ, Picardi MV, Nicholson T, Wistuba D, Poets CF, Schleicher E, Perez-Gil J, Bernhard W: Myristate is selectively incorporated into surfactant and decreases dipalmitoylphosphatidylcholine without functional impairment. Am J Physiol Regul Integr Comp Physiol. 2010 Nov;299(5):R1306-16. doi: 10.1152/ajpregu.00380.2010. Epub 2010 Sep 1. [PubMed:20811010 ]
- Legrand P, Beauchamp E, Catheline D, Pedrono F, Rioux V: Short chain saturated fatty acids decrease circulating cholesterol and increase tissue PUFA content in the rat. Lipids. 2010 Nov;45(11):975-86. doi: 10.1007/s11745-010-3481-5. Epub 2010 Oct 6. [PubMed:20924709 ]
- Lesot P, Serhan Z, Aroulanda C, Billault I: Analytical contribution of NAD 2D-NMR spectroscopy in polypeptide mesophases to the investigation of triglycerides. Magn Reson Chem. 2012 Dec;50 Suppl 1:S2-11. doi: 10.1002/mrc.3855. [PubMed:23280656 ]
- Jaiswal P, Kumar P, Singh VK, Singh DK: Enzyme Inhibition by Molluscicidal Components of Myristica fragrans Houtt. in the Nervous Tissue of Snail Lymnaea acuminata. Enzyme Res. 2010;2010:478746. doi: 10.4061/2010/478746. Epub 2009 Dec 6. [PubMed:21048864 ]
- Jin SE, Kim CK, Kim YB: Cellular delivery of cationic lipid nanoparticle-based SMAD3 antisense oligonucleotides for the inhibition of collagen production in keloid fibroblasts. Eur J Pharm Biopharm. 2012 Sep;82(1):19-26. doi: 10.1016/j.ejpb.2012.05.015. Epub 2012 Jun 15. [PubMed:22705642 ]
- Joseph S, Bunjes H: Preparation of nanoemulsions and solid lipid nanoparticles by premix membrane emulsification. J Pharm Sci. 2012 Jul;101(7):2479-89. doi: 10.1002/jps.23163. Epub 2012 Apr 23. [PubMed:22527807 ]
- Li R, Eun JS, Lee MK: Pharmacokinetics and biodistribution of paclitaxel loaded in pegylated solid lipid nanoparticles after intravenous administration. Arch Pharm Res. 2011 Feb;34(2):331-7. doi: 10.1007/s12272-011-0220-2. Epub 2011 Mar 6. [PubMed:21380818 ]
- Ribeiro Dos Santos I, Richard J, Thies C, Pech B, Benoit JP: A supercritical fluid-based coating technology. 3: preparation and characterization of bovine serum albumin particles coated with lipids. J Microencapsul. 2003 Jan-Feb;20(1):110-28. [PubMed:12519706 ]
- Jasicka-Misiak I, Lipok J, Swider IA, Kafarski P: Possible fungistatic implications of betulin presence in betulaceae plants and their hymenochaetaceae parasitic fungi. Z Naturforsch C. 2010 Mar-Apr;65(3-4):201-6. [PubMed:20469638 ]
- Petersen S, Steiniger F, Fischer D, Fahr A, Bunjes H: The physical state of lipid nanoparticles influences their effect on in vitro cell viability. Eur J Pharm Biopharm. 2011 Sep;79(1):150-61. doi: 10.1016/j.ejpb.2011.03.022. Epub 2011 Mar 31. [PubMed:21458564 ]
- Petersen S, Fahr A, Bunjes H: Flow cytometry as a new approach to investigate drug transfer between lipid particles. Mol Pharm. 2010 Apr 5;7(2):350-63. doi: 10.1021/mp900130s. [PubMed:20063898 ]
- Noack A, Hause G, Mader K: Physicochemical characterization of curcuminoid-loaded solid lipid nanoparticles. Int J Pharm. 2012 Feb 28;423(2):440-51. doi: 10.1016/j.ijpharm.2011.12.011. Epub 2011 Dec 16. [PubMed:22197758 ]
- Nayak AP, Tiyaboonchai W, Patankar S, Madhusudhan B, Souto EB: Curcuminoids-loaded lipid nanoparticles: novel approach towards malaria treatment. Colloids Surf B Biointerfaces. 2010 Nov 1;81(1):263-73. doi: 10.1016/j.colsurfb.2010.07.020. Epub 2010 Jul 17. [PubMed:20688493 ]
- Manjunath K, Venkateswarlu V, Hussain A: Preparation and characterization of nitrendipine solid lipid nanoparticles. Pharmazie. 2011 Mar;66(3):178-86. [PubMed:21553647 ]
- Lugemwa FN: Extraction of betulin, trimyristin, eugenol and carnosic acid using water-organic solvent mixtures. Molecules. 2012 Aug 3;17(8):9274-82. doi: 10.3390/molecules17089274. [PubMed:22864237 ]
- Simons K, Toomre D: Lipid rafts and signal transduction. Nat Rev Mol Cell Biol. 2000 Oct;1(1):31-9. [PubMed:11413487 ]
- Watson AD: Thematic review series: systems biology approaches to metabolic and cardiovascular disorders. Lipidomics: a global approach to lipid analysis in biological systems. J Lipid Res. 2006 Oct;47(10):2101-11. Epub 2006 Aug 10. [PubMed:16902246 ]
- Sethi JK, Vidal-Puig AJ: Thematic review series: adipocyte biology. Adipose tissue function and plasticity orchestrate nutritional adaptation. J Lipid Res. 2007 Jun;48(6):1253-62. Epub 2007 Mar 20. [PubMed:17374880 ]
- Lingwood D, Simons K: Lipid rafts as a membrane-organizing principle. Science. 2010 Jan 1;327(5961):46-50. doi: 10.1126/science.1174621. [PubMed:20044567 ]
- Ghosh S, Strum JC, Bell RM: Lipid biochemistry: functions of glycerolipids and sphingolipids in cellular signaling. FASEB J. 1997 Jan;11(1):45-50. [PubMed:9034165 ]
- Gunstone, Frank D., John L. Harwood, and Albert J. Dijkstra (2007). The lipid handbook with CD-ROM. CRC Press.
- Linda T. Welson (2006). Triglycerides and Cholesterol Research. Nova Science Publishers Inc..
|
|---|